Application Of Content-Based Filtering For Recommending Scientific Article Reviewers Using Jaccard Similarity (Case Study: ICVEE)

Authors

  • Zuhriyah Akmalul Fitri Universitas Negeri Surabaya

Keywords:

Content-Based Filtering, Cosine Similarity, Jaccard Similarity, Recommendation System, Scientific Articles, TF-IDF

Abstract

The peer review process is one of the crucial stages in scientific publications to ensure the quality, validity, and originality of a scientific article. One of the main challenges is finding reviewers who are competent and relevant to the research topic. This research aims to develop a Content-Based Filtering-based reviewer recommendation system to make it easier to select the right reviewer. This method analyzes the content similarity between the article to be reviewed and the reviewer's expertise based on historical review data in the form of title, abstract and track name using TF-IDF Vectorizer and Jaccard Similarity techniques. The results indicate that the Jaccard approach achieves a precision of 8.33 %, recall of 6.75 %, F1‑score of 7.45 %, and accuracy of 20 %, whereas Cosine Similarity yields only 5 % precision, 4 % recall, 4.4 % F1‑score, and 15 % accuracy. These low metrics reveal limitations in the reviewer profile dataset and underscore the need to enrich features, improve data completeness, or adopt a hybrid methodology. The primary contribution of this research is an empirical demonstration that TF‑IDF combined with Jaccard outperforms Cosine in the context of reviewer recommendation, while offering practical recommendations for enhancing recommendation systems within the scientific publication ecosystem.

References

Cahyani, D. E., & Patasik, I. (2021). Performance comparison of tf-idf and word2vec models for emotion text classification. Bulletin of Electrical Engineering and Informatics, 10(5), 2780–2788. https://doi.org/10.11591/eei.v10i5.3157

Devi Nurhayati, S., & Widayani, W. (2021). Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering Yogyakarta Culinary Recommendation System with Item-Based Collaborative Filtering Method. In JACIS : Journal Automation Computer Information System (Vol. 1, Issue 2). https://manganenakyog.my.id/,

Hickman, L., Thapa, S., Tay, L., Cao, M., & Srinivasan, P. (2022). Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations. Organizational Research Methods, 25(1), 114–146. https://doi.org/10.1177/1094428120971683

Murty, C. S. V. V. S. N., Varma, G. P. S., & Chakravarthy, A. S. N. (2022). Content-Based Collaborative Filtering with Predictive error Reduction-Based CNN Using IPU Model. International Journal of Information Security and Privacy, 16(2). https://doi.org/10.4018/IJISP.308309

Ordak, M. (2022). Recommendations to medical journals on ways to encourage statistical experts to review submissions. In Current Medical Research and Opinion (Vol. 38, Issue 9, pp. 1553–1554). Taylor and Francis Ltd. https://doi.org/10.1080/03007995.2022.2096335

Putra, F., Tahiyat, H. F., Ihsan, R. M., Rahmaddeni, R., & Efrizoni, L. (2024). Penerapan Algoritma K-Nearest Neighbor Menggunakan Wrapper Sebagai Preprocessing untuk Penentuan Keterangan Berat Badan Manusia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 273–281. https://doi.org/10.57152/malcom.v4i1.1085

Roldan-Baluis, W. L., Zapata, N. A., & Vasquez, M. S. M. (2022). The effect of natural language processing on the analysis of unstructured text: A systematic review. International Journal of Advanced Computer Science and Applications, 13(5).

Rosid, M. A., Fitrani, A. S., Astutik, I. R. I., Mulloh, N. I., & Gozali, H. A. (2020). Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi. IOP Conference Series: Materials Science and Engineering, 874(1). https://doi.org/10.1088/1757-899X/874/1/012017

Siti Aminah, S. A. (2024). Perbandingan Keakuratan Sistem Rekomendasi Produk Berbasis Content-Based Filtering Dan Collaborative Filtering Pada E-Commerce Shopee Menggunakan Matrik Precision, Recall Dan F1-Score. Online Repository of Universitas NU Kalimantan Selatan, 1-18.

Utomo, S., Subroto, I. M. I., & Riansyah, A. (2022). Deteksi Plagiat Tugas Akhir dengan Metode Jaccard Similarity. Jurnal Transistor Elektro dan Informatika (TRANSISTOR EI, vol. 4, no. 2, p.

Yacouby, R., & Axman, D. (2020). Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. In Proceedings of the first workshop on evaluation and comparison of NLP systems (pp. 79-91).

Published

2025-08-28

How to Cite

Zuhriyah Akmalul Fitri. (2025). Application Of Content-Based Filtering For Recommending Scientific Article Reviewers Using Jaccard Similarity (Case Study: ICVEE). Journal of Education Technology and Information System, 3(02). Retrieved from https://journal.unesa.ac.id/index.php/jetis/article/view/44866
Abstract views: 66

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.