Article Reviewer Recommendation System Using Euclidean Distance Similarity with Content-Based Collaborative Filtering (Case Study: ICVEE)

Authors

  • wilda Uinversitas Negeri Surabaya
  • I Kadek Dwi Nuryana

Keywords:

Academic conference; Content-based filtering; Euclidean Distance; Recommendation system; Reviewer matching; TF-IDF

Abstract

The growth of research publications in academic environments has resulted in large volumes of unstructured data, particularly in the form of article titles and abstracts. However, the majority of educational institutions still manage these resources manually, without optimizing them for academic decision-making. This study proposes an article reviewer recommendation system using a content-based filtering method with TF-IDF for text representation and Euclidean Distance as the similarity measure. Reviewer profiles are constructed based on previously reviewed articles. A new article is represented as a vector and compared against reviewer profiles to determine relevance. The system was evaluated using 20 articles as ground truth. Results show that the Euclidean Distance approach outperformed Cosine Similarity, achieving an accuracy of 55%, precision of 0.2333, recall of 0.2121, and F1-score of 0.222. This study demonstrates the potential of content-based filtering in enhancing reviewer assignment efficiency for academic conferences such as ICVEE.

References

Ermy, A. K., Susanti, U. R., Rio, U., & Tashid, T. (2025). Komparasi K-Means Clustering dengan Euclidean dan Cosine Similarity untuk Segmentasi dan Rekomendasi Produk pada Data E-Commerce. The Indonesian Journal of Computer Science, 14(2), 3032–3039. https://doi.org/10.33022/ijcs.v14i2.4713

Hariri, F. R., & Rochim, L. W. (2022). Sistem rekomendasi produk aplikasi marketplace berdasarkan karakteristik pembeli menggunakan metode user based collaborative filtering. TEKNIKA, 11(3), 208–217. https://doi.org/10.34148/teknika.v11i3.538

Huang, M., Fauzianty, S. N., Nuryanto, N., Julia, S., Hurint, F. O. M., & Kharisma, I. L. (2025). Sistem rekomendasi film menggunakan algoritma K-Nearest Neighbors. Prosiding Seminar Nasional Teknologi Informasi, Mekatronika, dan Ilmu Komputer, 4, 115–120. Retrieved from https://prosiding.sentimeter.nusaputra.ac.id/index.php/prosiding/article/view/81

Muhima, R. R., Nugroho, H., & Chasan, C. I. (2022). Penerapan Euclidean Distance untuk deteksi kemiripan citra berbasis Scale Invariant Feature Transform (SIFT). INTEGER: Journal of Information Technology, 7(1), 63–69. https://doi.org/10.31294/integers.v7i1.2923

Nuraini, R. (2022). Implementasi Euclidean Distance dan segmentasi K-Means Clustering pada identifikasi citra jenis ikan nila. KLIK: Kajian Ilmiah Informatika dan Komputer, 3(1), 1–8. https://doi.org/10.30865/klik.v3i1.551

Pangestu, M. S., & Fitriani, M. A. (2022). Perbandingan perhitungan jarak Euclidean Distance, Manhattan Distance, dan Cosine Similarity dalam pengelompokan data bibit padi menggunakan algoritma K-Means. Sainteks, 19(2), 141–155. https://doi.org/10.30595/sainteks.v19i2.14495

Published

2025-08-28

How to Cite

wilda, & I Kadek Dwi Nuryana. (2025). Article Reviewer Recommendation System Using Euclidean Distance Similarity with Content-Based Collaborative Filtering (Case Study: ICVEE). Journal of Education Technology and Information System, 3(01). Retrieved from https://journal.unesa.ac.id/index.php/jetis/article/view/44744
Abstract views: 45

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.