Public Complaint Text Classification in the Wargaku Application Using Natural Language Processing
Keywords:
Natural language processing, Public complaints, Streamlit application, Support vector machine, Text classification, TF-IDFAbstract
The Wargaku application is utilized by Surabaya residents to submit complaints concerning population administration services. With the increasing number of complaints, manual categorization becomes inefficient and susceptible to errors. This research aims to create an automatic classification system utilizing Natural Language Processing (NLP) and machine learning techniques. The dataset comprises 2,303 complaints divided into 18 categories. During preprocessing, text data was converted into numerical form using the Term Frequency–Inverse Document Frequency (TF-IDF) approach. Three machine learning models were tested: Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN), with evaluations based on accuracy and F1-score. Hyperparameter tuning was applied to enhance model performance. The SVM model yielded the best outcome with a training-to-testing data ratio of 85:15, resulting in a training accuracy of 93.96%, an F1-score of 96.08%, and a testing F1-score of 94.15%. This model was deployed in a web-based application via Streamlit to automatically categorize public complaints. The findings confirm the effectiveness of combining NLP and SVM in improving the efficiency of digital public service systems.
References
Adi, S., & Wintarti, A. (n.d.). Komparasi metode Support Vector Machine (SVM), K-Nearest Neighbors (KNN), dan Random Forest (RF) untuk prediksi penyakit gagal jantung. MATHunesa, 10(2), 258–268. https://doi.org/10.26740/mathunesa.v10n2.p258-268
Adilita, V. R., & Rahmawati, I. D. (2024). Efektivitas penggunaan aplikasi Wargaku dalam meningkatkan pelayanan publik di Kota Surabaya. LANCAH: Jurnal Inovasi dan Tren, 2(2b). https://doi.org/10.35870/ljit.v2i2b.2855
Adrian, M. R., Putra, M. P., Rafialdy, M. H., & Rakhmawati, N. A. (2021). Perbandingan metode klasifikasi Random Forest dan SVM pada analisis sentimen PSBB. Jurnal Informatika Universitas, 7(1). https://doi.org/10.26877/jiu.v7i1.7099
Dharmawan, S., Viny, V., Mawardi, C., Novario, D., & Perdana, J. (2022). Klasifikasi ujaran kebencian menggunakan metode FeedForward Neural Network (IndoBERT). Jurnal Ilmu Komputer dan Sistem Informasi, 11(1). https://doi.org/10.24912/jiksi.v11i1.24066
Gunawan, K. I., & Santoso, J. (2021). Multilabel text classification menggunakan SVM dan Doc2Vec pada dokumen berita Bahasa Indonesia. Journal of Information System, Graphics, Hospitality and Technology, 3(1), 29–38. https://doi.org/10.37823/insight.v3i01.126
Hamidah, D. (2024). Aplikasi evaluasi pembelajaran mahasiswa jurusan Teknik Industri Universitas Sultan Ageng Tirtayasa berbasis machine learning [Undergraduate thesis, Universitas Sultan Ageng Tirtayasa]. http://eprints.untirta.ac.id/id/eprint/45962
Hidayat, A. A. (n.d.). Analisis ekstraksi fitur pada klasifikasi teks menggunakan algoritma K-Nearest Neighbor (Studi kasus: Berita hoaks) [Undergraduate thesis, UIN Syarif Hidayatullah Jakarta]. https://repository.uinjkt.ac.id/dspace/handle/123456789/71598
Karsana, M. M. N., Kusuma, K. M., & Astuti, W. (2023). Single-label and multi-label text classification using ANN and comparison with Naïve Bayes and SVM. Jurnal Media Informatika Budidarma, 7(2), 857–864. https://doi.org/10.30865/mib.v7i2.6024
Kartika Delimayanti, M., Sari, R., Laya, M., Faisal, M. R., & Pahrul, D. (2021). Pemanfaatan metode multiclass-SVM pada model klasifikasi pesan bencana banjir di Twitter. Edu Komputika, 8(1). https://doi.org/10.15294/edukomputika.v8i1.47858
May, I., & Fanida, E. (2022). Analisis efektivitas aplikasi Wargaku Surabaya dalam menunjang pelayanan publik masyarakat Kota Surabaya. Publika, 11(1), 1553–1568. https://doi.org/10.26740/publika.v11n1.p1553-1568
Nur, D., Widiyanto, K. M., & Puspitaningtyas, A. (2023). Pelayanan pengaduan masyarakat melalui aplikasi “Wargaku Surabaya” sebagai perwujudan e-governance Kota Surabaya. Triwikrama: Jurnal Ilmu Sosial, 5(1). https://doi.org/10.53697/iso.v5i1.2616
Prayesy, P. A. (2025). Studi perbandingan metode Support Vector Machine, Random Forest, dan Convolutional Neural Network untuk klasifikasi penyakit kulit. Jurnal Kecerdasan Buatan dan Teknologi Informasi, 4(1), 70–76. https://doi.org/10.32531/jsoscied.v7i2.826
Prayesy, P. A. (2025). STUDI PERBANDINGAN METODE SUPPORT VECTOR MACHINE, RANDOM FOREST, DAN CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI PENYAKIT KULIT. Jurnal Kecerdasan Buatan Dan Teknologi Informasi, 4(1), 70–76. https://doi.org/10.69916/jkbti.v4i1.214
Rozi, I. F., Wijayaningrum, V. N., & Khozin, N. (2020). Klasifikasi teks laporan masyarakat pada situs LAPOR! menggunakan Recurrent Neural Network. Sistemasi, 9(3), 633–640. https://doi.org/10.32520/stmsi.v9i3.977
Sunarti, R., & Hayat, M. A. M. (2024). Klasifikasi pengaduan pelayanan Fakultas Teknik Universitas Muhammadiyah Makassar menggunakan Natural Language Processing. Arus Jurnal Sains dan Teknologi (AJST), 2(2). http://jurnal.ardenjaya.com/index.php/ajsthttp://jurnal.ardenjaya.com/index.php/ajst
Taufiqurrahman, F., Al Faraby, S., & Purbolaksono, M. D. (2021). Klasifikasi teks multi-label pada hadis terjemahan Bahasa Indonesia menggunakan Chi-Square dan SVM. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(2). https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15671/0
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alfina Dian Febyani, I Kadek Dwi Nuryana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract views: 63



