Portable Pico Hydro Power Plant for Power Station Charger

Authors

  • Muhammad Taufiqurrohman Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya, Indonesia
  • Dita Octaviani Department of Electronic and Computer Engineering (ECE), National Taiwan University of Science and Technology (NTUST)

DOI:

https://doi.org/10.26740/vubeta.v1i2.35597

Keywords:

Pico hydro, Renewable energy, Portable generator, Water turbine, Power station charger

Abstract

The earth's energy reserves will be depleted due to the growing demand for energy, necessitating the adoption of renewable energy sources. The best way to replace it is to use the energy that flows through water to create electricity. Batteries can also be utilized to store electrical energy for later use. In this study, the batteries used to turn the water's energy into electricity are portable generators that can be carried anywhere. By needing a portable unit that is made from a turbine, generator, charger controller, auto buck bost converter, battery, and other supporting parts. It functions as a charger for computers, cellphones, and other electronic devices without a 12V battery that may change the voltage. Compare the variance in the water flow discharge and the power charger's charging time using the results that were obtained. River discharge 73.621 l/s charging time 42 hours, river discharge 73.621 l/s charging time 42 hours, pipe discharge 6.41 l/s charging time 84 hours, pipe discharge 8.064 l/s pipe charging time 38 hours, pipe discharge 9.868 l/s charging time 32 hours, and pipe discharge 14.42 l/s pipe 27 hours were the results. The battery charges more quickly the higher the discharge.

 

References

[1] Y. Shang, D. Han, G. Gozgor, M. K. Mahalik, and B. K. Sahoo, “The impact of climate policy uncertainty on renewable and non-renewable energy demand in the United States”, Renew Energy, vol. 197, pp. 654–667, 2022. https://doi.org/10.1016/j.renene.2022.07.159

[2] B. Paris et al., “Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption”, Renewable and Sustainable Energy Reviews, vol. 158, 2022. https://doi.org/10.1016/j.rser.2022.112098

[3] C. Klinlampu, N. Chimprang, and J. Sirisrisakulchai, “The sufficient level of growth in renewable energy generation for coal demand reduction”, Energy Reports, vol. 9, pp. 843–849, 2023. doi: https://doi.org/10.1016/j.egyr.2023.05.203.

[4] P. Diesing, D. Bogdanov, D. Keiner, R. Satymov, D. Toke, and C. Breyer, “Exploring the demand for inter-annual storage for balancing wind energy variability in 100% renewable energy systems”, Energy Reports, p. 133572, 2024. doi: https://doi.org/10.1016/j.energy.2024.133572.

[5] S. Panda et al., “A comprehensive review on demand side management and market design for renewable energy support and integration”, Energy Reports, vol.10, pp. 2228–2250, 2023. doi: https://doi.org/10.1016/j.egyr.2023.09.049.

[6] R. Akpahou, L. D. Mensah, D. A. Quansah, and F. Kemausuor, “Long-term energy demand modeling and optimal evaluation of solutions to renewable energy deployment barriers in Benin: A LEAP-MCDM approach”, Energy Reports, vol. 12, pp. 1888–1904, 2024. doi: https://doi.org/10.1016/j.egyr.2024.07.055

[7] D. Adu, D. Jianguo, S. N. Asomani, and A. Abbey, “Energy generation and carbon dioxide emission—The role of renewable energy for green development”, Energy Reports, vol.12, 2024. doi: https://doi.org/10.1016/j.egyr.2024.07.013.

[8] C. H. B. Apribowo, S. P. Hadi, F. Danang Wijaya, M. I. B. Setyonegoro, and Sarjiya, “Optimal sizing and placement of battery energy storage system for maximum variable renewable energy penetration considering demand response flexibility: A case in Lombok power system, Indonesia”, Energy Conversion and Management: X, vol. 23, 2024, doi: https://doi.org/10.1016/j.ecmx.2024.100620.

[9] X. Long et al., “Industry demand response in dispatch strategy for high-proportion renewable energy power system”, Journal of Automation and Intelligence, vol. 3, no. 4, 2024. doi: https://doi.org/10.1016/j.jai.2024.08.002.

[10] A.G. Olabi et al., “Renewable energy systems: Comparisons, challenges and barriers, sustainability indicators, and the contribution to UN sustainable development goals”, International Journal of Thermofluids, vol. 20, 2023. doi: https://doi.org/10.1016/j.ijft.2023.100498.

[11] Nica.Ionuț, Georgescu.Irina, Chirita.Nora, “Simulation and Modelling as Catalysts for Renewable Energy: A Bibliometric Analysis of Global Research Trends”, Energies, vol. 17, no.13, 2024. https://doi.org/ 10.3390/en17133090

[12] A. Briones-Hidrovo, J. Uche, and A. Martínez-Gracia, “Hydropower and environmental sustainability: A holistic assessment using multiple biophysical indicators”, Ecological Indicators, vol. 127, 2021. doi: https://doi.org/10.1016/j.ecolind.2021.107748

[13] E. Vagnoni et al., “The new role of sustainable hydropower in flexible energy systems and its technical evolution through innovation and digitalization”, International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023, vol. 230, 2024. doi: https://doi.org/10.1016/j.renene.2024.120832.

[14] U. Azimov and N. Avezova, “Sustainable small-scale hydropower solutions in Central Asian countries for local and cross-border energy/water supply”, Renewable and Sustainable Energy Reviews, vol.167, 2022, doi: https://doi.org/10.1016/j.rser.2022.112726.

[15] M. K. Pandit, K. Manish, G. Singh, and A. Chowdhury, “Hydropower: A low-hanging sour-sweet energy option for India”, Heliyoh, vol. 9, no. 6, 2023. doi: https://doi.org/10.1016/j.heliyon.2023.e17151.

[16] S. Thyer and T. White, “Energy recovery in a commercial building using pico-hydropower turbines: An Australian case study”, Heliyon, vol. 9, no. 6, 2023. doi: https://doi.org/10.1016/j.heliyon.2023.e16709.

[17] R. M. Llácer-Iglesias, P. A. López-Jiménez, and M. Pérez-Sánchez, “Exploring options for energy recovery from wastewater: Evaluation of hydropower potential in a sustainability framework”, Sustainable Cities and Society, vol. 95, 2023. doi: https://doi.org/10.1016/j.scs.2023.104576.

[18] B. Oyinna et al., “Assessing small hydropower sites in Nigeria for sustainable development using ArcGIS”, Energy Reports, vol. 10, pp. 2889–2898, 2023. doi: https://doi.org/10.1016/j.egyr.2023.09.102.

[19] P. Gabrielli, J. Garrison, S. Hässig, E. Raycheva, and G. Sansavini, “The role of hydrogen storage in an electricity system with large hydropower resources”, Energy Conversion and Management, vol. 302, 2024. doi: https://doi.org/10.1016/j.enconman.2024.118130.

[20] D. Novitasari, Sarjiya, S. P. Hadi, R. Budiarto, and Deendarlianto, “The climate and land-use changes impact on water availability for hydropower plants in Indonesia”, Energy Strategy Reviews, vol. 46, 2023. doi: https://doi.org/10.1016/j.esr.2022.101043.

[21] D. Avesani et al., “Short-term hydropower optimization driven by innovative time-adapting econometric model”, Applied Energy, vol. 310, 2022, doi: https://doi.org/10.1016/j.apenergy.2021.118510.

[22] G. M. Lima, F. N. Belchior, J. E. N. Villena, J. L. Domingos, M. A. V. Freitas, and J. D. Hunt, “Hybrid electrical energy generation from hydropower, solar photovoltaic and hydrogen”, Int J Hydrogen Energy, vol. 53, pp. 602–612, Jan. 2024, doi: https://doi.org/10.1016/j.ijhydene.2023.12.092.

[23] A. Helseth, “Approximating hydropower systems by feasibility spaces in stochastic dual dynamic programming”,

Electric Power Systems Research, vol. 234, 2024.doi: https://doi.org/10.1016/j.epsr.2024.110615.

[24] R. J. H. Dallison and S. D. Patil, “Impact of climate change on hydropower potential in the UK and Ireland”, Renew Energy, vol. 207, pp. 611–628, 2023. doi: https://doi.org/10.1016/j.renene.2023.03.021.

[25] Y. Guan, S. Post, D. Zhao, S. Zhang, and S. Becker, “Overview of the application status and development trends of

hydropower and geothermal power in New Zealand”, 2024. doi: https://doi.org/10.1016/j.enbenv.2024.06.003.

[26] A. Ali et al., “Small hydropower generation using pump as turbine; a smart solution for the development of Pakistan’s

energy”, Heliyon, vol. 9, no. 4, 2023. doi: https://doi.org/10.1016/j.heliyon.2023.e14993.

[27] K. Anfom, X. Xioyang, D. Adu, and R. O. Darko, “The state of energy in sub-Saharan Africa and the urgency for small hydropower development”, Energy Reports, vol. 9, pp. 257–261, 2023. doi: https://doi.org/10.1016/j.egyr.2023.10.011.

[28] X. Lei, “Research on development and utilization of hydropower in Myanmar”, Energy Reports, vol. 8, pp. 16–21, 2022. doi: https://doi.org/10.1016/j.egyr.2021.11.031.

[29] Y. Xie, S. Guo, S. Zhong, Z. He, P. Liu, and Y. Zhou, “Optimal allocation of flood prevention storage and dynamic operation of water levels to increase cascade reservoir hydropower generation”, Renewable Energy, vol. 228, 2024. doi: https://doi.org/10.1016/j.renene.2024.120676.

[30] D. K. Kidmo, B. Bogno, K. Deli, J. L. D. B. Nsouandele, and M. Aillerie, “Prospects of hydropower for electricity generation in the East Region of Cameroon”, Energy Reports, vol. 7, pp. 780–797, 2021. doi: https://doi.org/10.1016/j.egyr.2021.07.062.

[31] M. Catania, F. Parolin, F. Fattori, and P. Colbertaldo, “The role of hydropower in decarbonisation scenarios”,

Renewable Energy, vol. 236, p. 121411,2024. doi: https://doi.org/10.1016/j.renene.2024.121411.

[32] J. P. Hoffstaedt et al., “Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling”, Renewable and Sustainable Energy Reviews, vol. 158, 2022. doi: https://doi.org/10.1016/j.rser.2022.112119.

[33] M. D. Lee and P. S. Lee, “Modelling the Energy Extraction from Low-Velocity Stream Water by Small Scale Archimedes Screw Turbine”, Journal of King Saud University - Engineering Sciences, vol. 35, no. 5, pp. 319–326, 2023. doi: https://doi.org/10.1016/j.jksues.2021.04.006.

[34] R. Thakur et al., “Potential of the Archimedes screw to generate sustainable green energy for mini, micro, and pico hydro Turbine power stations: An extensive analysis”, Energy Strategy Reviews, vol. 55, 2024. doi: https://doi.org/10.1016/j.esr.2024.101514.

[35] F. González-González, A. Barbón, L. Bayón, and R. Georgious, “An Experimental Investigation of Various Control Systems for an Archimedes Screw Turbine in a Micro-Hydropower Plant”, Applied Sciences (Switzerland), vol. 14, no. 2, 2024. doi: https://doi.org/10.3390/app14020512.

[36] Y. Dai, Z. Deng, B. Li, L. Zhong, and J. Wang, “Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines”, Fluid Dynamics and Materials Processing, vol. 20, no. 7, pp. 1517–1537, 2024. doi: https://doi.org/10.32604/FDMP.2024.046828.

[37] S. C. Simmons, C. Elliott, M. Ford, A. Clayton, and W. D. Lubitz, “Archimedes screw generator powerplant assessment and field measurement campaign”, Energy for Sustainable Development, vol. 65, pp. 144–161, 2021. doi: https://doi.org/10.1016/j.esd.2021.09.007.

[38] A. C. Sánchez, W. F. Galeano, and J. M. Zambrano, “Design of A Micro-Hydraulic Generation System Based On An Archimedes Screw”, Ingenius, vol. 2023, no. 29, pp. 98–107, 2023. doi: https://doi.org/10.17163/ings.n23.2023.09.

[39] M. Zamani, R. Shafaghat, and B. A. Kharkeshi, “Experimental Investigation on the Effect of Flow Rate and Load on the Hydrodynamic Behavior and Performance of an Archimedes Screw Turbine”, International Journal of Engineering, Transactions A: Basics, vol. 36, no. 4, pp. 733–745, 2023. doi: https://doi.org/10.5829/ije.2023.36.04a.12.

[40] Z. Abbas, M. Waqas, S. S. Khan, R. Khatoon, S. Larkin, and L. Zhao, “Numerical and experimental investigation of

an Archimedes screw turbine for open channel water flow application”, Energy Science Engineering, vol. 12, no. 4,

pp. 1317–1336, 2024. doi: https://doi.org/10.1002/ese3.1649.

[41] M. M. Shamsuddeen, M. A. Shahzer, M. S. Roh, and J. H. Kim, “Feasibility study of ultra-low-head hydro turbines for energy extraction from shallow waterways”, Heliyon, vol. 10, no. 15, 2024. doi: https://doi.org/10.1016/j.heliyon.2024.e35008.

[42] R. Servidio, M. Sinatra, M. D. Griffiths, and L. Monacis, “Social comparison orientation and fear of missing out as mediators between self-concept clarity and problematic smartphone use”, Addictive Behaviors, vol. 122, 2021. doi: https://doi.org/10.1016/j.addbeh.2021.107014.

[43] P. Verduyn, J. C. C. Schulte-Strathaus, E. Kross, and U. R. Hülsheger, “When do smartphones displace face-to-face interactions and what to do about it?” Computers in Human Behavior, vol. 114, 2021. doi: https://doi.org/10.1016/j.chb.2020.106550.

[44] L. Li, Z. Niu, S. Mei, and M. D. Griffiths, “A network analysis approach to the relationship between fear of missing out (FoMO), smartphone addiction, and social networking site use among a sample of Chinese university students”, Computers Human Behavior, vol. 128, 2022. doi: https://doi.org/10.1016/j.chb.2021.107086.

[45] R. Servidio, “Fear of missing out and self-esteem as mediators of the relationship between maximization and problematic smartphone use”, Current Psychology, vol. 42, no.1, pp. 232–242, 2023. doi: https://doi.org/10.1007/s12144-020-01341-8/Published.

[46] H. Yang, B. Liu, and J. Fang, “Stress and Problematic Smartphone Use Severity: Smartphone Use Frequency and

Fear of Missing Out as Mediators”, Front Psychiatry, vol. 12, 2021. doi: https://doi.org/10.3389/fpsyt.2021.659288.

[47] M. Guo, W. Wang, X. Huang, Y. Chen, L. Zhang, and L. Chen, “Lyapunov-Based Partial Computation Offloading for Multiple Mobile Devices Enabled by Harvested Energy in MEC”, IEEE Internet Things Journal, vol. 9, no. 11,

pp. 9025–9035, 2022. doi: https://doi.org/10.1109/JIOT.2021.3118016.

[48] B. K. Komatineni, S. K. Satpathy, K. K. Venkat Reddy, B. Sukdeva, U. Dwivedi, and J. Lahre, “Development and Evaluation of Bluetooth based Remote Controlled Battery Powered Drum Seeder”, e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 6, 2023. doi: https://doi.org/10.1016/j.prime.2023.100333.

[49] A. H. A. AL-Jumaili, R. C. Muniyandi, M. K. Hasan, M. J. Singh, J. K. S. Paw, and M. Amir, “Advancements in intelligent cloud computing for power optimization and battery management in hybrid renewable energy systems: A comprehensive review”, Energy Report, vol. 10, 2023. doi: https://doi.org/10.1016/j.egyr.2023.09.029.

[50] H. Jo, S. Seo, J. Kim, and F. Bien, “A coreless track-type seamless wireless charging system using co-planar wires enabling quasi-free planar movements for mobile logistics robots”, Applied Energy, vol. 375, 2024. doi: https://doi.org/10.1016/j.apenergy.2024.123943.

[51] D. A. Elalfy, E. Gouda, M. F. Kotb, V. Bureš, and B. E. Sedhom, “Comprehensive review of energy storage systems technologies, objectives, challenges, and future trends”, Energy Strategy Reviews, vol. 54, 2024. doi: https://doi.org/10.1016/j.esr.2024.101482.

[52] H. Magsi, A. H. Sodhro, N. Zahid, S. Pirbhulal, L. Wang, and M. S. Al-Rakhami, “A novel adaptive battery-aware algorithm for data transmission in iot-based healthcare applications”, Electronics (Switzerland), vol. 10, no. 4, pp. 1– 17, 2021. doi: https://doi.org/10.3390/electronics10040367.

[53] Ye, S. Liu, and E. Kontou, “Managed residential electric vehicle charging minimizes electricity bills while meeting driver and community preferences”, Transport Policy, vol. 149, pp. 122–138, 2024. doi: https://doi.org/10.1016/j.tranpol.2024.01.022.

[54] J. L. Demuth, J. Buberger, A. Huber, E. Behrens, M. Kuder, and T. Weyh, “Unveiling the Power of Data in Bidirectional Charging: A Qualitative Stakeholder Approach Exploring the Potential and Challenges of V2G”, Green Energy and Intelligent Transportation, vol. 3, no. 6, Sep. 2024, doi: https://doi.org/10.1016/j.geits.2024.100225.

[55] N. Kumar Saxena et al., “Economic benefits of DSTATCOM for ancillary services in commercial charging stations: Marginal occupancy analysis”, Ain Shams Engineering Journal, vol. 15, no. 12, 2024. doi: https://doi.org/10.1016/j.asej.2024.103029.

[56] D. Horak, A. Hainoun, G. Neugebauer, and G. Stoeglehner, “Battery electric vehicle energy demand in urban energy system modeling: A stochastic analysis of added flexibility for home charging and battery swapping stations”, Sustainable Energy, Grids and Networks, vol. 37, 2024. doi: https://doi.org/10.1016/j.segan.2023.101260.

[57] F. Corti et al., “A comprehensive review of charging infrastructure for Electric Micromobility Vehicles: Technologies

and challenges”, Energy Reports, vol. 12, 2024. doi: https://doi.org/10.1016/j.egyr.2024.06.026.

[58] M. Razeghi, A. Roghani Araghi, A. Naseri, and H. Yousefi, “Strategic deployment of GIS-optimized solar charging stations for electric vehicles: A multi-criteria decision-making approach”, Energy Conversion and Management: X, vol. 24, 2024. doi: https://doi.org/10.1016/j.ecmx.2024.100712.

[59] N. Yuniarti, D. Hariyanto, S. Yatmono, and M. Abdillah, “Design and Development of IoT Based Water Flow

Monitoring for Pico Hydro Power Plant”, International Journal of Interactive Mobile Technologies, vol. 15, no. 7,

pp. 69–80, 2021, doi: https://doi.org/10.3991/ijim.v15i07.18425.

[60] E. Gallego, A. Rubio-Clemente, J. Pineda, L. Velásquez, and E. Chica, “Experimental analysis on the performance of a pico-hydro Turgo turbine”, Journal of King Saud University - Engineering Sciences, vol. 33, no. 4, pp. 266–275, 2021. doi: https://doi.org/10.1016/j.jksues.2020.04.011.

[61] S. Mukhtar, S. Muhammad, H. A. Alyousef, W. Khan, R. Shah, and S. A. El-Tantawy, “Enviro-economic and optimal hybrid energy system: Photovoltaic–biogas–hydro–battery system in rural areas of Pakistan”, Heliyon, vol. 10, no. 16, 2024. doi: https://doi.org/10.1016/j.heliyon.2024.e35182.

[62] B. Vinayakumar, R. Antony, V. A. Binson, and S. Youhan, “Experimental and numerical study on gravitational water vortex power plant for small water bodies”, e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 7, 2024. doi: https://doi.org/10.1016/j.prime.2024.100460.

[63] Eswanto et al., “The Phenomenon of Water Fluid Flow Distribution in Hydropower Pico-Hydro Viewed from the Number of Turbine Screw Winding”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 124, no.2, pp. 110-123, 2024. doi: https://doi.org/10.37934/arfmts.124.2.110123

[64] S. Mohamed, A. Gamal, E. Riham, Abdel Gawad, R. Reda, “Techno-economic assessment of the dethridge waterwheel under sluice gates in a novel design for pico hydropower generation”, vol. 234, 2024. doi: https://doi.org/10.1016/j.renene.2024.121206

[65] Warjito et al., “Design of Open Flume Turbine using Specific Speed of Power and Discharge”, vol. 122, no. 1, 2024. doi: https://doi.org/10.37934/arfmts.122.1.5668

Downloads

Published

2024-12-01

How to Cite

[1]
M. Taufiqurrohman and D. Octaviani, “Portable Pico Hydro Power Plant for Power Station Charger”, Vokasi Unesa Bull. Eng. Technol. Appl. Sci., vol. 1, no. 2, pp. 1–11, Dec. 2024.

Issue

Section

Article
Abstract views: 248 , PDF Downloads: 55