Energy Monitoring in Wave Power Plant Based on Node-Red and ESP 8266

Authors

  • Berliana Dzakiyya Rosalin Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya, Surabaya, Indonesia

DOI:

https://doi.org/10.26740/vubeta.v1i3.35456

Keywords:

Wave Power, Renewable Energy, ESP 8266, Node-Red, INA 219 Sensor

Abstract

Renewable energy in Indonesia includes solar, water or hydro, bioenergy, wind, geothermal, and ocean waves. The large availability of renewable energy, especially ocean waves, is supported by the geographical conditions of Indonesia, which is the largest archipelagic country. Indonesia has 17,499 islands from Sabang to Merauke, while the area of ​​Indonesia is 7.81 km2 and 3.25 million km2 is ocean. This is related to the world's electricity needs which are estimated to reach 1000 EJ (EJ = 1018J) and will continue to increase every day. Depletion of reserves and greenhouse gas emissions do not allow fossil fuel energy to dominate. Therefore, the Node Red and ESP 8266 Based Wave Power Plant is one of the profitable renewable alternative energies on a commercial scale. The design of this prototype uses a pendulum system. The up and down motion of the pendulum will be converted into a rotary motion by the crankshaft and distributed to the pulley and DC generator. Thus, it can distribute electrical energy that is controlled first by the charger controller before entering the battery. Then the INA 219 sensor will detect the amount of voltage and current generated and distributed to the internet (Node Red) via ESP 8266 so that the tool can be monitored remotely.

Author Biography

Berliana Dzakiyya Rosalin, Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya, Surabaya, Indonesia

Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya, Surabaya, Indonesia

References

[1] F. Kourougianni et al., “A comprehensive review of green hydrogen energy systems,” Renew. Energy, p. 120911, 2024.https://doi.org/10.1016/j.renene.2024.120911

[2] H. Ritchie, P. Rosado, and M. Roser, “Access to energy,” Our World Data, 2024.

[3] A. Morchid, Z. Oughannou, R. El Alami, H. Qjidaa, M. O. Jamil, and H. M. Khalid, “Integrated internet of things (IoT) solutions for early fire detection in smart agriculture,” Results Eng., vol. 24, p. 103392, 2024, doi: https://doi.org/10.1016/j.enbenv.2023.12.002.

[4] T. T. Le et al., “Fueling the future: A comprehensive review of hydrogen energy systems and their challenges,” Int. J. Hydrogen Energy, vol. 54, pp. 791–816, 2024. https://doi.org/10.1016/j.ijhydene.2023.08.044

[5] M. G. Khattap, M. Abd Elaziz, H. G. E. M. A. Hassan, A. Elgarayhi, and M. Sallah, “AI-based model for automatic identification of multiple sclerosis based on enhanced sea-horse optimizer and MRI scans,” Sci. Rep., vol. 14, no. 1, p. 12104, 2024, doi: 10.1038/s41598-024-61876-9.

[6] E. E. O. Opoku, A. O. Acheampong, K. E. Dogah, and I. Koomson, “Energy innovation investment and renewable energy in OECD countries,” Energy Strateg. Rev., vol. 54, p. 101462, 2024. https://doi.org/10.1016/j.esr.2024.101462

[7] Z. Zhang, C. Luo, G. Zhang, Y. Shu, and S. Shao, “New energy policy and green technology innovation of new energy enterprises: Evidence from China,” Energy Econ., vol. 136, p. 107743, 2024.https://doi.org/10.1016/j.eneco.2024.107743

[8] S. Audiah, Y. P. A. Sanjaya, O. P. Daeli, and M. Johnson, “Transforming energy and resource management with ai: From theory to sustainable practice,” Int. Trans. Artif. Intell., vol. 2, no. 2, pp. 158–163, 2024.https://doi.org/10.33050/italic.v2i2.554

[9] W. Chen, M. Alharthi, J. Zhang, and I. Khan, “The need for energy efficiency and economic prosperity in a sustainable environment,” Gondwana Res., vol. 127, pp. 22–35, 2024.https://doi.org/10.1016/j.gr.2023.03.025

[10] T. Alazemi, M. Darwish, and M. Radi, “Renewable energy sources integration via machine learning modelling: A systematic literature review,” Heliyon, 2024. https://doi.org/10.1016/j.heliyon.2024.e26088

[11] K. N. Rather, M. K. Mahalik, and H. Mallick, “Do renewable energy sources perfectly displace non-renewable energy sources? Evidence from Asia–Pacific economies,” Environ. Sci. Pollut. Res., vol. 31, no. 17, pp. 25706–25720, 2024. https://doi.org/10.1007/s11356-024-32820-1

[12] B. Behera, S. Sucharita, B. Patra, and N. Sethi, “A blend of renewable and non-renewable energy consumption on economic growth of India: The role of disaggregate energy sources,” Environ. Sci. Pollut. Res., vol. 31, no. 3, pp. 3902–3916, 2024. https://doi.org/10.1007/s11356-023-31372-0

[13] A. M. Husain, M. M. Hasan, Z. A. Khan, and M. Asjad, “A robust decision-making approach for the selection of an optimal renewable energy source in India,” Energy Convers. Manag., vol. 301, p. 117989, 2024. https://doi.org/10.1016/j.enconman.2023.117989

[14] J. Więckowski, B. Kizielewicz, and W. Sałabun, “A multi-dimensional sensitivity analysis approach for evaluating the robustness of renewable energy sources in European countries,” J. Clean. Prod., vol. 469, p. 143225, 2024. https://doi.org/10.1016/j.jclepro.2024.143225

[15] A. K. Worku, D. W. Ayele, D. B. Deepak, A. Y. Gebreyohannes, S. D. Agegnehu, and M. L. Kolhe, “Recent advances and challenges of hydrogen production technologies via renewable energy sources,” Adv. Energy Sustain. Res., vol. 5, no. 5, p. 2300273, 2024. https://doi.org/10.1002/aesr.202300273

[16] C. Haoran, Y. Xia, W. Wei, Z. Yongzhi, Z. Bo, and Z. Leiqi, “Safety and efficiency problems of hydrogen production from alkaline water electrolyzers driven by renewable energy sources,” Int. J. Hydrogen Energy, vol. 54, pp. 700–712, 2024. https://doi.org/10.1016/j.ijhydene.2023.08.324

[17] C. P. Agupugo, H. M. Kehinde, and H. N. N. Manuel, “Optimization of microgrid operations using renewable energy sources,” Eng. Sci. Technol. J., vol. 5, no. 7, pp. 2379–2401, 2024. https://doi.org/10.51594/estj.v5i7.1360

[18] A. B. Ige, E. Kupa, and O. Ilori, “Analyzing defense strategies against cyber risks in the energy sector: Enhancing the security of renewable energy sources,” Int. J. Sci. Res. Arch., vol. 12, no. 1, pp. 2978–2995, 2024. https://doi.org/10.30574/ijsra.2024.12.1.1186

[19] J. Estevão and J. D. Lopes, “SDG7 and renewable energy consumption: The influence of energy sources,” Technol. Forecast. Soc. Change, vol. 198, p. 123004, 2024. https://doi.org/10.1016/j.techfore.2023.123004

[20] A. Halimatussadiah, W. Kruger, F. Wagner, F. A. R. Afifi, R. E. G. Lufti, and L. Kitzing, “The country of perpetual potential: Why is it so difficult to procure renewable energy in Indonesia?,” Renew. Sustain. Energy Rev., vol. 201, p. 114627, 2024.https://doi.org/10.1016/j.rser.2024.114627

[21] G. M. Idroes, I. Hardi, M. H. Rahman, M. Afjal, T. R. Noviandy, and R. Idroes, “The dynamic impact of non-renewable and renewable energy on carbon dioxide emissions and ecological footprint in Indonesia,” Carbon Res., vol. 3, no. 1, pp. 1–21, 2024. https://doi.org/10.1007/s44246-024-00117-0

[22] N. A. Pambudi, I. R. Nanda, F. T. Alfina, and A. Z. Syahrial, “Renewable energy education and awareness among Indonesian students: Exploring challenges and opportunities for a sustainable future,” Sustain. Energy Technol. Assessments, vol. 63, p. 103631, 2024. https://doi.org/10.1016/j.seta.2024.103631

[23] A. N. Nurjaman, V. S. D. Soedarwo, D. S. Sayogo, and R. K. D. Susilo, “Assessing the Challenges and Opportunities for Implementing New and Renewable Energy Policy in Indonesia: A Qualitative Study,” J. Gov. Civ. Soc., vol. 8, no. 1, pp. 77–90, 2024. https://doi.org/10.31000/jgcs.v8i1.8970

[24] M. M. Islam, K. Sohag, S. O. Mamman, and H. Herdhayinta, “Response of Indonesian mineral supply to global renewable energy generation: Analysis based on gravity model approach,” Geosci. Front., vol. 15, no. 4, p. 101658, 2024.https://doi.org/10.1016/j.gsf.2023.101658

[25] C.-Y. Chen, S.-H. Wu, B.-W. Huang, C.-H. Huang, and C.-F. Yang, “Web-based Internet of Things on environmental and lighting control and monitoring system using node-RED, MQTT and Modbus communications within embedded Linux platform,” Internet of Things, vol. 27, p. 101305, 2024. https://doi.org/10.1016/j.iot.2024.101305

[26] L. Thomas, M. K. MV, S. D. SL, and P. BS, “Towards Comprehensive Home Automation: Leveraging the IoT, Node-RED, and Wireless Sensor Networks for Enhanced Control and Connectivity,” Eng. Proc., vol. 59, no. 1, p. 173, 2024. https://doi.org/10.3390/engproc2023059173

[27] I. U. Onwuegbuzie, A. O. Olowojebutu, and K. K. Akomolede, “Node-RED and IoT Analytics: A Real-Time Data Processing and Visualization Platform,” Tech-sph. J. Pure Appl. Sci., vol. 1, no. 1, pp. 1–12, 2024.

[28] R. Saparullah, J. Pebralia, and L. Z. Maulana, “Internet of Things (IoT) and Arduino IDE as a Smart Water Quality Control for Monitoring in Catfish Ponds,” Int. J. Hydrol. Environ. Sustain., vol. 3, no. 1, pp. 48–56, 2024. https://doi.org/10.58524/ijhes.v3i1.415

[29] A. Zulfiqar, “Hands-on ESP32 with Arduino IDE: Unleash the power of IoT with ESP32 and build exciting projects with this practical guide,” 2024.

[30] A. IDE, “Arduino IDE,” 2024, Ανάκτηση από Arduino IDE: https://www. arduino. cc/en/software.

Downloads

Published

2024-12-15

How to Cite

[1]
B. Dzakiyya Rosalin, “Energy Monitoring in Wave Power Plant Based on Node-Red and ESP 8266”, Vokasi Unesa Bull. Eng. Technol. Appl. Sci., vol. 1, no. 3, pp. 9–15, Dec. 2024.
Abstract views: 36 , PDF Downloads: 32