Impact of Grid-Scale Solar Photovoltaic Integration on Power System Performance
DOI:
https://doi.org/10.26740/vubeta.v2i2.35474Keywords:
solar energy, Transient stability, Renewable integration, Penetration limit, Power system performanceAbstract
The impact of SPV integration on grid performance is a topic of ongoing debate, with conflicting reports on its effects. This study employs modal analysis, Newton-Raphson power flow, and time-domain simulations to assess the effects of SPV integration on voltage profiles, active power loss, and system stability in the IEEE 4-machine and Nigerian 50-bus power systems. The findings reveal that SPV integration impacts power systems differently, emphasizing the need for a comprehensive approach that considers voltage stability, power losses, and stability constraints. While SPV integration can improve voltage levels and reduce power losses, it may also compromise transient stability, highlighting the importance of careful planning and grid reinforcement. For the IEEE 4-machine system, SPV integration is feasible up to 25% based on power loss, but transient stability constraints limit it to 0%. For the Nigerian grid, optimal SPV integration is achieved at 10% based on power loss and voltage profile, while transient stability constraints limit integration to 5%. This study underscores the necessity of a multi-metric approach to defining SPV penetration limits, considering the trade-offs between voltage performance, power loss, and system stability.
References
[1] W. Strielkowski, L. Civın, E. Tarkhanova, M. Tvaronaviciene˙, and Y. Petrenko, “Renewable energy in the sustainable development of electrical power sector: A review,” Energies, vol. 14, no. 24, 2021. [Online]. Available: https://doi.org/10.3390/en14248240
[2] O. C. Anika, S. G. Nnabuife, A. Bello, E. R. Okoroafor, B. Kuang, and R. Villa, “Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review,” Carbon Capture Science & Technology, vol. 5, p. 100072, 2022. [Online]. Available: https://doi.org/10.1016/j.ccst.2022.100072
[3] A. P. Adeagbo, F. K. Ariyo, K. A. Makinde, S. A. Salimon, O. B. Adewuyi, and O. K. Akinde, “Integration of solar photovoltaic distributed generators in distribution networks based on site’s condition,” Solar, vol. 2, no. 1, pp. 52–63, 2022. [Online]. Available: https://doi.org/10.3390/solar2010004
[4] Y. Elomari, M. Norouzi, M. Genesca, A. Fernandez, and D. Boer, “Integration of solar photovoltaic systems into power networks: A scientific evolution analysis,” Sustainability, vol. 14, no. 15, p. 9249, 2022. [Online]. Available: https://doi.org/10.3390/su14159249
[5] E. A. Sharew, H. A. Kefale, and Y. G. Werkie, “Power quality and performance analysis of grid-connected solar pv system based on recent grid integration requirements,” International Journal of Photoenergy, vol. 2, p. 4281768, 2021. [Online]. Available: https://doi.org/10.1155/2021/4281768
[6] J. Kumar, N. R. Parhyar, M. K. Panjwani, and D. Khan, “Design and performance analysis of pv grid-tied system with energy storage system,” International Journal of Electrical and Computer Engineering, vol. 11, no. 2, pp. 1077–1085, 2021. [Online]. Available: http://dx.doi.org/10.11591/ijece.v11i2.pp1077-1085
[7] R. K. Patnaik, P. S. Bharathi, S. Mathiyalagan, R. Thumma, G. Saravanan, M. Alanazi, V. Sivaraman, A. Elfasakhany, and A. Belay, “The potential role of pv solar power system to improve the integration of electric energy storage system,” International Journal of Photoenergy, vol. 2022, no. 1, p. 8735562, 2022. [Online]. Available: https://doi.org/10.1155/2022/8735562
[8] M. S. Hossain, N. Abboodi Madlool, A. W. Al-Fatlawi, and M. El Haj Assad, “High penetration of solar photovoltaic structure on the grid system disruption: An overview of technology advancement,” Sustainability, vol. 15, no. 2, 2023. [Online]. Available: https://doi.org/10.3390/su15021174
[9] F. Peprah, S. Gyamfi, M. Amo-Boateng, and E. Effah-Donyina, “Impact assessment of grid tied rooftop pv systems on lv distribution network,” Scientific African, vol. 16, p. e01172, 2022. [Online]. Available: https://doi.org/10.1016/j.sciaf.2022.e01172
[10] O. B. Adewumi, G. Fotis, V. Vita, D. Nankoo, and L. Ekonomou, “The impact of distributed energy storage on distribution and transmission networks’ power quality,” Applied Sciences, vol. 12, no. 13, 2022. [Online]. Available: https://doi.org/10.3390/app12136466
[11] S. O. Sanni, A. I. Abdullateef, O. O. Mohammed, M. N. Aman, A. K. Raji, and I. D. Fajuke, “Investigating the impact of solar pv and wind energy systems on the strength of a longitudinal power grid,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 8, p. 100593, 2024. [Online]. Available: https://doi.org/10.1016/j.prime.2024.100593
[12] A. Salah Saidi, “Impact of grid-tied photovoltaic systems on voltage stability of tunisian distribution networks using dynamic reactive power control,” Ain Shams Engineering Journal, vol. 13, no. 2, p. 101537, 2022. [Online]. Available: https://doi.org/10.1016/j.asej.2021.06.023
[13] N. S. Ugwuanyi, I. O. Ozioko, U. U. Uma, O. A. Nwogu, N. C. Ugwuoke, A. O. Ekwue, and N. Nwokocha, “Enhancing renewable energy-grid integration by optimally placed facts devices: The nigeria case study,” Science Journal of Energy Engineering, vol. 12, no. 2, pp. 16–25, 2024. [Online]. Available: https://doi.org/10.36227/techrxiv.171200709.94642816/v1
[14] S. Zemitte, M. Hamouda, F. Z. Arama, and A. Laidi, “Impact analysis of pv integration on power system stability under contingencies: case study,” MM science journal, vol. 1, no. 6, p. 6495 – 6500, 2023. [Online]. Available: http://dx.doi.org/10.17973/MMSJ.2023_06_2023006
[15] B. B. Adetokun, J. O. Ojo, and C. M. Muriithi, “Application of large-scale grid-connected solar photovoltaic system for voltage stability improvement of weak national grids,” Scientific Reports, vol. 11, no. 1, 2021. [Online]. Available: https://doi.org/10.1038/s41598-021-04300-w
[16] M. F. Nadeem, M. A. Aman, X. C. Ren, W. U. K. Tareen, M. A. Khan, M. R. Anjum, A. M. Hashmi, H. Ali, I. Bari, J. Khan, and S. Ahmad, “Optimal siting of distributed generation unit in power distribution system considering voltage profile and power losses,” Mathematical Problems in Engineering, p. 5638407, 2022. [Online]. Available: https://doi.org/10.1155/2022/5638407
[17] I. O. Ozioko, N. S. Ugwuanyi, A. O. Ekwue, and C. I. Odeh, “Wind energy penetration impact on active power flow in developing grids,” Scientific African, vol. 18, p. e01422, 2022. [Online]. Available: https://doi.org/10.1016/j.sciaf.2022.e01422
[18] N. S. Ugwuanyi, X. Kestelyn, O. Thomas, B. Marinescu, and B. Wang, “A normal form-based power system out-of-step protection,” Electric Power Systems Research, vol. 208, p. 107873, 2022. [Online]. Available: https://doi.org/10.1016/j.epsr.2022.107873
[19] O. C. Akinsipe, D. Moya, and P. Kaparaju, “Design and economic analysis of off-grid solar pv system in jos-nigeria,” Journal of Cleaner Production, vol. 287, p. 125055, 2021. [Online]. Available: https://doi.org/10.1016/j.jclepro.2020.125055
[20] R. O. Olarewaju, A. S. O. Ogunjuyigbe, T. R. Ayodele, A. Yusuff, and T. Mosetlhe, “An assessment of proposed grid integrated solar photovoltaic in different locations of nigeria: Technical and economic perspective,” Cleaner Engineering and Technology, vol. 4, p. 100149, 2021. [Online]. Available: https://doi.org/10.1016/j.clet.2021.100149
[21] T. A. Olukan, S. Santos, A. A. Al Ghaferi, and M. Chiesa, “Development of a solar nano-grid for meeting the electricity supply shortage in developing countries (nigeria as a case study),” Renewable Energy, vol. 181, pp. 640–652, 2022. [Online]. Available: https://doi.org/10.1016/j.renene.2021.09.058
[22] O. T. Ibitoye, O. S. Agunbiade, T. W. Ilemobola, A. B. Oluwadare, P. C. Ofodu, K. O. Lawal, and J. O. Dada, “Nigeria electricity grid and the potentials of renewable energy integration: A concise review,” in 2022 IEEE 7th International Energy Conference (ENERGYCON), 2022, pp. 1–4. Available: http://dx.doi.org/10.1109/ENERGYCON53164.2022.9830349
[23] C. Diyoke, U. Ngwaka, and K. Ugwu, “A comprehensive analysis on the grid-tied solar photovoltaics for clean energy mix and supply in nigeria’s on-grid power,” Journal of Energy Systems, vol. 7, no. 1, p. 1–17, 2023. Available: https://doi.org/10.30521/jes.988844
[24] Y. N. Chanchangi, F. Adu, A. Ghosh, S. Sundaram, and T. K. Mallick, “Nigeria’s energy review: Focusing on solar energy potential and penetration,” Environment, Development and Sustainability, vol. 25, no. 7, pp. 5755–5796, 2023. [Online]. Available: https://doi.org/10.1007/s10668-022-02308-4
[25] A. O. Amole, S. Oladipo, O. E. Olabode, K. A. Makinde, and P. Gbadega, “Analysis of grid/solar photovoltaic power generation for improved village energy supply: A case of ikose in oyo state nigeria,” Renewable Energy Focus, vol. 44, pp. 186–211, 2023. [Online]. Available: https://doi.org/10.1016/j.ref.2023.01.002
[26] P. S. Kundur and O. P. Malik, Power System Stability and Control, 2nd ed., McGraw Hill Education, New York, 2022
[27] N. S. Ugwuanyi, I. O. Oziokoand N. C. Ugwoke, “Dataset for the Nigerian 50-Bus 330 kV Power Grid”. Zenodo, Jun. 18, 2024. [Online]. Available: https://doi.org/10.5281/zenodo.11643089
[28] E. Munkhchuluun, L. Meegahapola, and A. Vahidnia, “Long-term voltage stability with large-scale solar-photovoltaic (pv) generation,” International Journal of Electrical Power & Energy Systems, vol. 117, p. 105663, 2020. [Online]. Available: https://doi.org/10.1016/j.ijepes.2019.105663
[29] N. S. Ugwuanyi, O. A. Nwogu, I. O. Ozioko, and A. O. Ekwue, “An easy method for simultaneously enhancing power system voltage and angle stability using statcom,” Scientific African, vol. 25, p. e02248, 2024. [Online]. Available: https://doi.org/10.1016/j.sciaf.2024.e02248
[30] N. S. Ugwuanyi, U. U. Uma, and A. O. Ekwue, “Fundamental study of oscillations in the nigerian power system,” Nigerian Journal of Technolog, vol. 40, no. 5, pp. 913–926, 2021. [Online]. Available: http://dx.doi.org/10.4314/njt.v40i5.17
[31] O. A. Somoye, “Energy crisis and renewable energy potentials in nigeria: A review,” Renewable and Sustainable Energy Reviews, vol. 188, p. 113794, 2023. [Online]. Available: https://doi.org/10.1016/j.rser.2023.113794
[32] K. E. Okedu, B. Oyinna, I. Colak, and A. Kalam, “Geographical information system-based assessment of various renewable energy potentials in Nigeria,” Energy Reports, vol. 11, pp. 1147–1160, 2024. [Online]. Available: https://doi.org/10.1016/j.egyr.2023.12.065
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nnaemeka Sunday Ugwuanyi, Nestor Chima Ugwuoke, Patrick Ifeanyi Obi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

