A Modelling and Simulation of Damping Controller In DFIG AND PMSG Integrated With A Convectional Grid: A Review
DOI:
https://doi.org/10.26740/vubeta.v2i2.34749Keywords:
WECs, Generators, Damping controller, Stability, OptimizationAbstract
One of nature's most plentiful energy sources is a wind energy conversion system, which also has higher sustainability and no pollution. Damping controllers are designed to enhance hybrid robustness and adaptability when using permanent magnet and double-fed induction synchronous generators. The generators are integrated with convectional sources, which requires careful consideration of grid stability (rotor angle stability), which helps prevent mechanical oscillation and grid disruptions due to the instability. Power system stabilizers with excitation are designed and optimized to assure power system stabilizer settings for ideal damping performance and ignore energy losses; damping controllers are essential.
References
[1] D. A. Gutiérrez‐Torres, J. M. Ramírez, and J. M. Lozano‐García, “Implementing A Simplified Power Controller with a Direct Matrix Converter for A PMSG‐Based WECS,” IET Power Electronics, vol. 16, no. 16, pp. 2782–2791, 2023. https://doi.org/10.1049/pel2.12601.
[2] J. Urpelainen and T. Van de Graaf, “The International Renewable Energy Agency: A Success Story in Institutional Innovation?”, International Environmental Agreements: Politic Law and Economics, vol. 15, pp. 159–177, 2015. https://doi.org/10.1007/s10784-013-9226-1.
[3] M. Pandey and D. Gusain, “Energy: Present and Future Demands,” Advanced Nanocatalysts for Biodiesel Production, CRC Press, pp. 1–16, 2022.
[4] Z. Allal, H. N. Noura, O. Salman, and K. Chahine, “Leveraging the Power of Machine Learning and Data Balancing Techniques to Evaluate Stability in Smart Grids,” Engineering Applications of Artificial Intelligence, 2024. https://doi.org/10.1016/j.engappai.2024.108304.
[5] L. Lv, X. Fang, S. Zhang, X. Ma, and Y. Liu, “Optimization of Grid-Connected Voltage Support Technology and Intelligent Control Strategies for New Energy Stations Based on Deep Learning,” Energy Informatics, vol. 7, no. 1, p. 73, 2024. https://doi.org/10.1186/s42162-024-00382-8.
[6] K. Zhang, V. Pakrashi, J. Murphy, and G. Hao, “Inspection of Floating Offshore Wind Turbines Using Multi-Rotor Unmanned Aerial Vehicles: Literature Review and Trends,” Sensors, vol. 24, no. 3, p. 911, 2024. https://doi.org/10.3390/s24030911.
[7] O. J. Gbadeyan, J. Muthivhi, L. Z. Linganiso, and N. Deenadayalu, “Decoupling Economic Growth from Carbon Emissions: A Transition Toward Low-Carbon Energy Systems—A Critical Review,” Clean Technology, vol. 6, no. 3, pp. 1076–1113, 2024. https://doi.org/10.3390/cleantechnol6030054.
[8] S. M. H. D. Perera, G. Putrus, M. Conlon, M. Narayana, and K. Sunderland, “Wind Energy Harvesting and Conversion Systems: A Technical Review,” Energies. 2022. https://doi.org/10.3390/en15249299.
[9] J. Giddings, H. Bloomfield, R. James, and M. Blair, “The Impact of Future UK Offshore Wind Farm Distribution and Climate Change on Generation Performance nd Variability,” Environment Research Letters, vol. 19, no. 6, p. 64022, 2024. https://doi.org/10.1088/1748-9326/ad489b.
[10] W. Wu et al., “Wind-Speed-Adaptive Resonant Piezoelectric Energy Harvester for Offshore Wind Energy Collection,” Sensors, vol. 24, no. 5, p. 1371, 2024. https://doi.org/10.3390/s24051371.
[11] A. Nawawi, A. A. Ardani, S. P. Setia, and R. Rahmadian, “Off-Grid Solar System Monitoring Based on ESP-32 and INA219 In Pesanggrahan Gordomulyo,” Vokasi Unesa Bulletin of Engineering Technology and Applied Science, vol. 1, no. 2, pp. 22–32, 2024. https://doi.org/10.26740/vubeta.v1i2.34859.
[12] S. W. Xia, S. Q. Bu, X. Zhang, Y. Xu, B. Zhou, and J. B. Zhu, “Model Reduction Strategy of Doubly-Fed Induction Generator-Based Wind Farms for Power System Small-Signal Rotor Angle Stability Analysis,” Applied Energy, 2018. https://doi.org/10.1016/j.apenergy.2018.04.024.
[13] X. Zhang, C. Ma, X. Song, Y. Zhou, and W. Chen, “The Impacts of Wind Technology Advancement on Future Global Energy,” Applied Energy, 2016. https://doi.org/10.1016/j.apenergy.2016.04.029.
[14] R. Arief and M. I. Faudi Maulana, “Current and Voltage Monitoring in Wind Power Plants Using ESP8266 And Node-Red,” Vokasi Unesa Bulletin of Engineering Technology and Applied Science, vol. 1, no. 2, pp. 64–71, 2024. https://doi.org/10.26740/vubeta.v1i2.35429.
[15] Y. Kumar et al., “Wind energy: Trends and Enabling Technologies,” Renewable and Sustainable Energy Reviews. 2016. https://doi.org/10.1016/j.rser.2015.07.200.
[16] K. E. Okedu, S. M. Muyeen, R. Takahashi, and J. Tamura, “Use of Supplementary Rotor Current Control in DFIG to Augment Fault Ride Through of Wind Farm as Per Grid Requirement,” 2011. https://doi.org/10.1109/IECON.2011.6119555.
[17] A. Nduwamungu, E. Ntagwirumugara, F. Mulolani, and W. Bashir, “Fault Ride Through Capability Analysis (Frt) in Wind Power Plants with Doubly Fed Induction Generators for Smart Grid Technologies,” Energies, 2020. https://doi.org/10.3390/en13164260.
[18] K. E. Okedu, S. M. Muyeen, R. Takahashi, and J. Tamura, “Improvement of Fault Ride Through Capability of Wind Farms using DFIG considering SDBR,” Proceedings of the 2011 14th European Conference on Power Electronics and Applications, 2011.
[19] K. E. Okedu, “Enhancing DFIG Wind Turbine During Three Phase Fault Using Parallel Interleaved Converters and Dynamic Resistor,” IET Renewable Power Generations, vol. 10, no. 8, pp. 1211–1219 2016. https://doi.org/10.1049/iet-rpg.2015.0607.
[20] K. E. Okedu, S. M. Muyeen, R. Takahashi, and J. Tamura, “Participation of Facts in Stabilizing DFIG With Crowbar During Grid Fault Based on Grid Codes,” IEEE GCC Conference and Exhibition, pp. 365–368, 2011. https://doi.org/10.1109/IEEEGCC.2011.5752550.
[21] T. E. Odoh, A. Sabo, and N. I. A. Wahab, “Mitigation of Power System Oscillation in a DFIG-Wind Integrated Grid: A Review,” Applications of Modelling and Simulations, vol. 6, pp. 134 – 149, 2022.
[22] S. D. Ahmed, F. S. M. Al-Ismail, M. Shafiullah, F. A. Al-Sulaiman, and I. M. El-Amin, “Grid Integration Challenges of Wind Energy: A Review,” IEEE Access. 2020. https://doi.org/10.1109/ACCESS.2020.2964896.
[23] K. Eloghene Okedu, “Introductory Chapter: Power System Stability,” Power System Stability, 2019. https://doi.org/10.5772/intechopen.84497.
[24] B. Boujoudi, E. Kheddioui, N. Machkour, A. Achalhi, and M. Bezza, “Comparative Study Between Different Types of Control of The Wind Turbine in Case of Voltage Dips,” Renewable Energies, Power Systems and Green Inclusive Economy, 2018. https://doi.org/10.1109/REPSGIE.2018.8488776.
[25] K. E. Okedu, S. M. Muyeen, R. Takahashi, and J. Tamura, “Comparative Study Between Two Protection Schemes For DFIG-Based Wind Generator,” International Conference on Electrical Machines and Systems, pp. 62-67, 2010.
[26] Y. Bekakra and D. Ben Attous, “Sliding Mode Controls of Active and Reactive Power of A DFIG With MPPT for Variable Speed Wind Energy Conversion,” Australian Journal of Basic and Applied Science, 2011.
[27] GWEC, “Global Wind Energy Council, Global Wind Report 2022,” Wind energy Technology, 2022.
[28] M. Shouran, M. Alenezi, M. N. Muftah, A. Almarimi, A. Abdallah, and J. Massoud, “A novel AVR system utilizing fuzzy PIDF enriched by FOPD controller optimized via PSO and Sand Cat Swarm Optimization algorithms,” Energies, vol. 18, no. 6, p. 1337, 2025. https://doi.org/10.3390/en18061337.
[29] A. Sabo, N. I. Abdul Wahab, M. L. Othman, M. Z. A. Mohd Jaffar, H. Beiranvand, and H. Acikgoz, “Application of a Neuro-Fuzzy Controller for Single Machine Infinite Bus Power System to Damp Low-Frequency Oscillations,” Transactions of the Institute of Measurement and Control, vol. 43, no. 16, pp. 3633–3646, 2021. https://doi.org/10.1177/01423312211042781.
[30] S. Hasanvand, H. Sobhani, M. Mardaneh, and M.-H. Khooban, “Optimal Design of Battery Energy Storage System Controllers for Damping Low‐Frequency Oscillations,” International Journal of Energy Resources, vol. 2025, no. 1, p. 2248945, 2025. https://doi.org/10.1155/er/2248945.
[31] C. Zhang, X. Chang, J. Dai, Z. Chen, and M. Babanezhad, “Designing of a wide-area power system stabilizer using an exponential distribution optimizer and fuzzy controller considering time delays,” Science Report, vol. 15, no. 1, p. 1773, 2025. https://doi.org/10.1038/s41598-025-85524-y.
[32] S. Rajendran, M. Diaz, R. Cárdenas, E. Espina, E. Contreras, and J. Rodriguez, “A Review of Generators and Power Converters for Multi-MW Wind Energy Conversion Systems,” Processes. 2022. https://doi.org/10.3390/pr10112302.
[33] T. Z. Ang, M. Salem, M. Kamarol, H. S. Das, M. A. Nazari, and N. Prabaharan, “A Comprehensive Study of Renewable Energy Sources: Classifications, Challenges and Suggestions,” Energy Strategy Reviews, 2022. https://doi.org/10.1016/j.esr.2022.100939.
[34] A. Bonfiglio, F. Delfino, F. Gonzalez-Longatt, and R. Procopio, “Steady-state Assessments of PMSGs in Wind Generating Units,” International Journal of Electrical Power and Energy Systems, vol. 90, pp. 87 – 93, 2017. https://doi.org/10.1016/j.ijepes.2017.02.002.
[35] H. Benbouhenni et al., “Solving the problem of power ripples for a multi-rotor wind turbine system using fractional-order third-order sliding mode algorithms,” Science Reports, vol. 15, no. 1, p. 5636, 2025, doi: https://doi.org/10.1038/s41598-025-89636-3.
[36] M. A. A. Bezerra, J. L. W. Oliveira, P. P. Praca, D. S. Oliveira, L. H. S. C. Barreto, and B. R. De Almeida, “Isolated AC-DC Interleaved Converter for MVDC Collection Grid in HVDC Offshore Wind Farm,” IEEE Applied Power Electronics Conference and Exposition, 2019. https://doi.org/10.1109/APEC.2019.8722018.
[37] S. Coelho, V. Monteiro, and J. L. Afonso, “Topological Advances in Isolated DC–DC Converters: High-Efficiency Design for Renewable Energy Integration,” Sustainability, vol. 17, no. 6, p. 2336, 2025, doi: https://doi.org/10.3390/su17062336.
[38] J. G. Njiri and D. Söffker, “State-Of-The-Art in Wind Turbine Control: Trends and Challenges,” Renewable and Sustainable Energy Reviews, vol. 60. pp. 377-393, 2016. https://doi.org/10.1016/j.rser.2016.01.110.
[39] H. Tiismus, V. Maask, V. Astapov, T. Korõtko, and A. Rosin, “State-of-the-Art Review of Emerging Trends in Renewable Energy Generation Technologies,” IEEE Access, vol. 13, pp. 10820-10843, 2025. https://doi.org/10.1109/ACCESS.2025.3528640.
[40] M. Darabian, A. Bagheri, and S. Behzadpoor, “A UPFC-based robust damping controller for optimal use of renewable energy sources in modern renewable integrated power systems,” IET Generation, Transmission & Distribution, vol. 16, no. 20, pp. 4115-4131, 2022. https://doi.org/10.1049/gtd2.12583.
[41] O. Apata and D. T. O. Oyedokun, “An Overview of Control Techniques for Wind Turbine Systems,” Scientific African, vol.10, 2020. https://doi.org/10.1016/j.sciaf.2020.e00566.
[42] S. Rajendran, M. Diaz, H. Chavez, M. Cruchaga, and E. Castillo, “Terminal Synergetic Control for Variable Speed Wind Turbine Using a Two Mass Model,” IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, 2021. https://doi.org/10.1109/CHILECON54041.2021.9703058.
[43] A. Hassan, G. Ahmad, M. Shafiullah, A. Islam, and M. S. Alam, “Review of the Intelligent Frameworks for Pitch Angle Control in Wind Turbines,” IEEE Access, vol. 13, pp. 29864-29885, 2025. https://doi.org/10.1109/ACCESS.2025.3540367.
[44] J. Charles Rajesh Kumar and M. A. Majid, “Renewable Energy for Sustainable Development in India: Current Status, Future Prospects, Challenges, Employment, and Investment Opportunities,” Energy, Sustainability and Society. 2020. https://doi.org/10.1186/s13705-019-0232-1.
[45] S. G. Sadhana, S. Ashok, and S. Kumaravel, “Small Signal Stability Analysis of Grid Connected Renewable Energy Resources with the Effect of Uncertain Wind Power Penetration,” International Conference on Power Engineering Computing and Control, vol. 117, pp. 769 – 776, 2017. https://doi.org/10.1016/j.egypro.2017.05.193.
[46] M. H. Kazma and A. F. Tah, “Stability and Uncertainty Propagation in Power Networks: A Lyapunov-based Approach with applications to Renewable Resources Allocation,” IEEE Transactions on Power Systems, 2025. https://doi.org/10.1109/TPWRS.2025.3539250.
[47] L. Kunjumuhammed, S. Kuenzel, and B. Pal, Simulation of Power System with Renewables. Academic Press, 2019.
[48] GWEC, “Global wind energy council report 2018,” Wind Global Council Energy, 2019.
[49] WETO, “How Do Wind Turbines Work?,” WETO, 2023.
[50] Y. K. Kirange and P. Nema, “Optimising SMIB system stability: FOPID controller tuning via Harris hawks optimisation,” Evolutionary Intelligence, vol. 18, no. 1, p. 16, 2025. https://doi.org/10.1007/s12065-024-00991-y.
[51] P. W. Sauer, M. A. Pai, and J. H. Chow, Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox 2e. 2017.
[52] J. Bhukya, “Enhancing Stability in Wind‐Integrated Power Systems Through Coordinated Control of POD, PSS, and SVC With Fuzzy Logic: A Comprehensive Study Under Various Operating Conditions,” Optimal Control Applications and Methods, vol. 46, no. 1, pp. 343–366, 2025. https://doi.org/10.1002/oca.3213
[53] Nityanand and A. K. Pandey, “Performance Analysis of PMSG Wind Turbine at Variable Wind Speed,” IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, pp. 1-6, 2018. https://doi.org/10.1109/UPCON.2018.8597081.
[54] F. Blaabjerg and K. Ma, “Future on Power Electronics for Wind Turbine Systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 3, pp. 139-152, 2013. https://doi.org/10.1109/JESTPE.2013.2275978.
[55] J. Shair, H. Li, J. Hu, and X. Xie, “Power System Stability Issues, Classifications and Research Prospects in The Context of High-Penetration of Renewables and Power Electronics,” Renewable and Sustainable Energy Reviews. 2021. https://doi.org/10.1016/j.rser.2021.111111.
[56] M. A. S. K. Khan, S. A. Saleh, and M. A. Rahman, “Generation and Harmonics in Interior Permanent Magnet Wind Generator,” IEEE International Electric Machines and Drives Conference, pp. 17-23, 2009. https://doi.org/10.1109/IEMDC.2009.5075177.
[57] M. Bapiri and A. Vahedi, “Improving performance of ring-winding axial flux permanent magnet motor based on harmonic analysis approach,” Electrical Engineering, pp. 1–13, 2025. https://doi.org/10.1007/s00202-025-03051-5.
[58] V. Yaramasu, “Predictive Control of Multilevel Converters for Megawatt Wind Energy Conversion Systems,” Toronto Metropolitan University, 2014. https://doi.org/10.13140/RG.2.1.3620.2400.
[59] H. Abouobaida et al., “A Three-Level Inverter-Based Model Predictive Control Design for Optimal Wind Energy Systems,” IEEE Access, vol. 13, pp. 42414-42427, 2025. https://doi.org/10.1109/ACCESS.2025.3547996.
[60] J. Jallad, S. Mekhilef, and H. Mokhlis, “Frequency Regulation Strategies in Grid Integrated Offshore Wind Turbines Via VSC-HVDC Technology: A Review,” Energies. Vol. 10, no.9, 2017. https://doi.org/10.3390/en10091244.
[61] Y. Dan et al., “A Coordinated Frequency Regulation Strategy Integrating Power Generation, Energy Storage, and DC Transmission for Offshore Wind Power MMC-HVDC Transmission Systems,” Energies, vol. 18, no. 3, p. 531, 2025. https://doi.org/10.3390/en18030531.
[62] A. Mansouri, A. El Magri, R. Lajouad, I. El Myasse, E. K. Younes, and F. Giri, “Wind Energy Based Conversion Topologies and Maximum Power Point Tracking: A Comprehensive Review and Analysis,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 6, 2023. https://doi.org/10.1016/j.prime.2023.100351.
[63] E. A. Haile, G. B. Worku, A. M. Beyene, and M. B. Tuka, “Modeling of Doubly Fed Induction Generator Based Wind Energy Conversion System and Speed Controller,” Journal of Energy Systems, vol. 5, no. 1, pp 46-59, 2021, doi: https://doi.org/10.30521/jes.854669
[64] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-Power Wind Energy Conversion Systems: State-Of-The-Art and Emerging Technologies,” Proceeding IEEE, vol. 103, no. 5, pp. 740–788, 2015. https://doi.org/10.1109/JPROC.2014.2378692.
[65] K. Zhou, Y. Ge, and J. Yang, “Analysis and Experimental Verification of a Novel Field Modulated Permanent Magnet Gear Machine,” IET Electric Power Applications, vol. 14, no. 7, pp. 1134-1140, 2020. https://doi.org/10.1049/iet-epa.2019.0858.
[66] V. Yaramasu and B. Wu, “Review of Generator‐converter Configurations for Wecs,” Model Predictive Control of Wind Energy Conversion Systems, 2017.
[67] M. García-Gracia, M. P. Comech, J. Sallán, and A. Llombart, “Modelling Wind Farms for Grid Disturbance Studies,” Renewable Energy, 2008. https://doi.org/10.1016/j.renene.2007.12.007.
[68] K. E. Okedu, S. M. Muyeen, R. Takahashi, and J. Tamura, “Application of SDBR with DFIG to Augment Wind Farm Fault Ride Through,” International Conference on Electrical Machines and Systems, 2011. https://doi.org/10.1109/ICEMS.2011.6073472.
[69] H. Polinder, J. A. Ferreira, B. B. Jensen, A. B. Abrahamsen, K. Atallah, and R. A. McMahon, “Trends in Wind Turbine Generator Systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 3, pp. 174-185, 2013. https://doi.org/10.1109/JESTPE.2013.2280428.
[70] M. Cheng and Y. Zhu, “The State of The Art of Wind Energy Conversion Systems and Technologies: A Review,” Energy Conversion and Management, 2014. https://doi.org/10.1016/j.enconman.2014.08.037.
[71] D. K. Bhutto, J. Ahmed Ansari, S. S. Hussain Bukhari, and F. Akhtar Chachar, “Wind energy conversion systems (WECS) Generators: A review,” International Conference on Computing, Mathematics and Engineering Technologies, pp. 1-6, 2019. https://doi.org/10.1109/ICOMET.2019.8673429.
[72] S. Chatterjee and S. Chatterjee, “Review on the techno-commercial aspects of wind energy conversion system,” IET IET Renewable Power Generation, vol. 12, no. 14, pp. 1581 – 1608, 2018. https://doi.org/10.1049/iet-rpg.2018.5197.
[73] G. Kömürgöz and T. Gündoǧdu, “Comparison of Salient Pole and Permanent Magnet Synchronous Machines Designed for Wind turbines,” IEEE Power Electronics and Machines in Wind Applications, 2012. https://doi.org/10.1109/PEMWA.2012.6316381.
[74] I. A. de Azevedo and L. S. Barros, “Comparison of Control Strategies for Squirrel-Cage Induction Generator-Based Wind Energy Conversion Systems,” IEEE International Conference on Industry Applications, pp. 790-796, 2021. https://doi.org/10.1109/INDUSCON51756.2021.9529574.
[75] E. Bounadja, A. B. Djilali, W. M. Kacemi, A. Yahdou, H. Benbouhenni, and I. Colak, “Enhancing Performance and Power Quality in A Wind Energy Conversion System Based on Permanent Magnet Synchronous Generator Through Improved 3rd-Order Super-Twisting Control,” Energy Reports, vol. 13, pp. 3204–3224, 2025. https://doi.org/10.1016/j.egyr.2025.02.052.
[76] W. L. Chen and C. H. Huang, “Active Power Control of Grid-Tied Squirrel-Cage Induction Generators under Subsynchronous Mode,” International Conference on Engineering of Modern Electric Systems, 2021. https://doi.org/10.1109/EMES52337.2021.9484136.
[77] H. Ahuja, A. Singh, V. S. Bhadoria, and S. Singh, “Performance Assessment of Distinct Configurations for Squirrel Cage Induction Generator Based Wind Energy Conversion Systems,” AIP Conference Proceedings, vol. 2335, no. 1, p. 40004, 2021. https://doi.org/10.1063/5.0043408.
[78] A. Beainy, C. Maatouk, N. Moubayed, and F. Kaddah, “Comparison of Different Types of Generator for Wind Energy Conversion System Topologies,” International Conference on Renewable Energies for Developing Countries, pp. 1-6, 2016. https://doi.org/10.1109/REDEC.2016.7577535.
[79] V. Mishra and P. Gupta, “Wind Energy Generation System using Wound Rotor Induction Machine,” Innovations in Power and Advanced Computing Technologies, pp. 1-7, 2019. https://doi.org/10.1109/i-PACT44901.2019.8960076.
[80] A. O.N, U. I.U., S. E. Abonyi, and O. G.O, “Enhancing Rotor Angle Stability of Synchronous Generators Using Neuro-Fuzzy Excitation Control Model,” International Journal of Latest Technology in Engineering Management & Applied Science, pp. 41-49, 2023. https://doi.org/10.51583/ijltemas.2023.12405.
[81] P. Kundur et al., “Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387-1401, 2004. https://doi.org/10.1109/tpwrs.2004.825981.
[82] G. M. Giannuzzi, V. Mostova, C. Pisani, S. Tessitore, and A. Vaccaro, “Enabling Technologies for Enhancing Power System Stability in the Presence of Converter-Interfaced Generators,” Energies. 2022. https://doi.org/10.3390/en15218064.
[83] N. Hatziargyriou et al., “Definition and Classification of Power System Stability–Revisited & Extended,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271–3281, 2020. https://doi.org/10.1109/TPWRS.2020.3041774.
[84] J. Machowski, Z. Lubosny, J. W. Bialek, and J. R. Bumby, Power system dynamics: stability and control. John Wiley & Sons, 2020.
[85] Q. Zhao, X. Qi, M. Hua, J. Liu, and H. Tian, “Review of The Recent Blackouts and The Enlightenment,” CIRED - Open Access Proceedings Journal, vol. 2020, no. 1, pp. 312-214, 2020. https://doi.org/10.1049/oap-cired.2021.0044.
[86] G. Alvarez and M. J. Blas, “Enhancing of The Operational Decisions in Electric Power Systems Under Blackouts,” International Conference on Decision Aid Sciences and Application, pp. 646-651, 2020. https://doi.org/10.1109/DASA51403.2020.9317285.
[87] B. Pang et al., “Review of The Analysis and Suppression for High-Frequency Oscillations of The Grid-Connected Wind Power Generation System,” CES Transactions on Electrical Machines and Systems, vol. 8, no. 2, pp. 127–142, 2024. https://doi.org/10.30941/CESTEMS.2024.00025.
[88] S. Masood, “Much of Pakistan Loses Power in Massive Blackout,” New York Times, 2021.
[89] S. Mogul, A. Saifi, and R. Syed, “Nearly 220 million People in Pakistan without Power after a Countrywide Outage,” CNN Business. Available online https//www. cnn. com/2023/01/22/asia/pakistan-power-outage-intl-hnk/index. html (accessed 23 January 2023), 2023.
[90] M. A. S. Ali, K. K. Mehmood, S. Baloch, and C. H. Kim, “Modified Rotor-Side Converter Control Design for Improving The LVRT Capability of a DFIG-based WECS,” Electric Power Systems Research, vol. 186, 2020. https://doi.org/10.1016/j.epsr.2020.106403.
[91] D. N. Ford, “A System Dynamics Glossary,” System Dynamics Review. 2019. https://doi.org/10.1002/sdr.1641.
[92] H. Zamani and M. Karimi-Ghartemani, “Analysis of Power System Oscillations from PMU Data Using an EPLL-Based Approach,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 2, pp. 307-316, 2018. https://doi.org/10.1109/TIM.2017.2777538.
[93] V. Kohan et al., “Use of Flexible Alternating Current Transmission System to Improve Power System Operation - Damping Oscillation and Power Flow Control,”CANDO-EPE 2021 - Proceedings: IEEE 4th International Conference and Workshop in Obuda on Electrical and Power Engineering, 2021. https://doi.org/10.1109/CANDO-EPE54223.2021.9667892.
[94] R. Xie and D. J. Trudnowski, “Tracking the Damping Contribution of a Power System Component Under Ambient Conditions,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 1116-1117, 2017. https://doi.org/10.1109/tpwrs.2017.2701649.
[95] A. Amin, A. Y. Abdelaziz, M. A. Attia, and M. Z. Kamh, “Enhancing rotor angle stability of reconfigured transmission networks,” Ain Shams Engineering Journal, vol. 16, no. 4, p. 103329, 2025. https://doi.org/10.1016/j.asej.2025.103329.
[96] P. Veers et al., “Grand Challenges in The Design, Manufacture, and Operation of Future Wind Turbine Systems,” Wind Energy Science, vol. 8, no. 7, 2023. https://doi.org/10.5194/wes-8-1071-2023.
[97] P. S.Kundur, and M. Om P., Power System Stability and Control. 2nd ed. New York: McGraw Hill. “Power System Stability and Control,” McGraw-Hill, Inc. 1994.
[98] W. Aribowo, “A Novel Improved Sea-Horse Optimizer for Tuning Parameter Power System Stabilizer,” Journal of Robotic Control, vol. 4, no. 1, pp. 12–22, 2023. https://doi.org/10.18196/jrc.v4i1.16445.
[99] D. Izci and S. Ekinci, “The Promise of Metaheuristic Algorithms for Efficient Operation of a Highly Complex Power System,” Comprehensive Metaheuristics: Algorithms and Applications, pp. 325-346, 2023. https://doi.org/10.1016/B978-0-323-91781-0.00017-X.
[100] W. Peres and R. P. B. Poubel, “Power System Stabilizers Tuning for Probabilistic Small-Signal Stability Enhancement Using Particle Swarm Optimization and Unscented Transformation,” Electrical Engineering, vol. 107, no. 1, pp. 947–964, 2025. https://doi.org/10.1007/s00202-024-02557-8.
[101] P. M. Anderson and A. A. Fouad, Power system control and stability. John Wiley & Sons, 2008.
[102] Z. Ye et al., “Oriented Data Generation for Power System Transient Stability Boundary Exploration Based on Support Vector Machine,” Electronics, vol. 14, no. 7, p. 1285, 2025. https://doi.org/10.3390/electronics14071285.
[103] M. A. Hannan et al., “Artificial Intelligent Based Damping Controller Optimization for the Multi-Machine Power System: A Review,” IEEE Access, vol. 6, pp. 39574-39594, 2018. https://doi.org/10.1109/ACCESS.2018.2855681.
[104] A. W. Khawaja, N. A. M. Kamari, and M. A. A. M. Zainuri, “Design of a Damping Controller Using a Metaheuristic Algorithm for Angle Stability Improvement of an SMIB System,” Applied Sciences, vol. 12, no. 2, 2022. https://doi.org/10.3390/app12020589.
[105] A. Sabo, N. I. A. Wahab, M. L. Othman, and M. Z. A. M. Jaffar, “Novel Farmland Fertility Algorithm Based Pidpss Design for Smib Angular Stability Enhancement,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2163-2171, 2020. https://doi.org/10.1109/TPWRS.2015.2460260.
[106] A. Kumar, “Power System Stabilizers Design for Multimachine Power Systems Using Local Measurements,” IEEE Trans. Power Syst., 2016. https://doi.org/10.1109/TPWRS.2015.2460260.
[107] G. Ensermu, M. Vijayashanthi, M. Suresh, A. S. Shaik, B. Premalatha, and G. Devadasu, “An FRLQG Controller-Based Small-Signal Stability Enhancement of Hybrid Microgrid Using the BCSSO Algorithm,” Journal of Electrical and Computer Engineering, 2023. https://doi.org/10.1155/2023/8404457.
[108] M. Mandour, M. El-Shimy, F. Bendary, and W. Ibrahim, “Damping of Power Systems Oscillations using FACTS Power Oscillation Damper – Design and Performance Analysis,” International Middle East Power Systems Conference, vol. 15, 2014. https://doi.org/10.13140/RG.2.2.33170.25285.
[109] J. Bhukya, “Optimal Coordination of Advanced PODC and Multiple FACTS Devices for Enhanced Stability In Wind Farm-Based Power Systems: A Genetic Algorithm Approach,” International Journal of Modelling and Simulation, pp. 1–30, 2025, doi: https://doi.org/10.1080/02286203.2025.2482631.
[110] J. J. Paserba, “How FACTS Controllers Benefit AC Transmission Systems,” IEEE PES Transmission and Distribution Conference and Exposition, pp. 991-998, 2004. https://doi.org/10.1109/tdc.2003.1335076.
[111] R. K. Varma and J. Paserba, “Flexible AC transmission systems (FACTS),” Power System Stability and Control, Third Edition, 2017.
[112] B. Bhattacharyya and S. Kumar, “Approach for the Solution of Transmission Congestion with Multi-Type FACTS devices,” IET Generation, Transmission & Distribution, vol 10, no. 11, 2016. https://doi.org/10.1049/iet-gtd.2015.1574.
[113] A. H. Naghshbandy and A. Faraji, “Coordinated Design of PSS and Unified Power Flow Controller Using The Combination of CWT and Prony Methods with The Help Of SPEA II Multi-Objective Optimization Algorithm,” IET Generation, Transmission & Distribution, vol. 13, no. 21, 2019. https://doi.org/10.1049/iet-gtd.2018.6605.
[114] A. Sabo, N. I. Abdul Wahab, and M. Lutfi Othman, “Coordinated Design of PSS and IPFC Using FFA to Control Low Frequency Oscillations,” IEEE 19th Student Conference on Research and Development, pp. 201-206, 2021. https://doi.org/10.1109/SCOReD53546.2021.9652711.
[115] S. R. Paital, P. K. Ray, S. R. Mohanty, and A. Mohanty, “An Adaptive Fractional Fuzzy Sliding Mode Controlled PSS for Transient Stability Improvement Under Different System Uncertainties,” IET Smart Grid, vol. 4, no. 1, 2021. https://doi.org/10.1049/stg2.12002.
[116] G. Kasilingam, J. Pasupuleti, C. Bharatiraja, and Y. Adedayo, “Single Machine Connected Infinite Bus System Tuning Coordination Control Using Biogeography-Based Optimization Algorithm,” FME Transanctions, vol. 47, 2019. https://doi.org/10.5937/fmet1903502G.
[117] K. Chin, T. Hellebrekers, and C. Majidi, “Machine Learning for Soft Robotic Sensing and Control,” Advanced Intelligent Systems, vol. 2, no. 6, 2020. https://doi.org/10.1002/aisy.201900171.
[118] L. Abualigah, D. Oliva, T. Mzili, A. Sabo, and H. A. Shehadeh, “Frilled Lizard Optimization to optimize parameters Proportional Integral Derivative of DC Motor,” Vokasi Unesa Bulletin Engineering Technology and Applied Science, pp. 14–21, 2024. https://doi.org/10.26740/vubeta.v1i1.33973.
[119] H. Shayeghi, A. Rahnama, N. Bizon, and A. Szumny, “Interconnected Microgrids Load‐Frequency Control Using Stage‐by‐Stage Optimized TIDA+ 1 Error Signal Regulator,” Engineering Reports, vol. 7, no. 1, p. e13095, 2025. https://doi.org/10.1002/eng2.13095.
[120] D. Osipov and K. Sun, “Adaptive Nonlinear Model Reduction for Fast Power System Simulation,” IEEE Power & Energy Society General Meeting, pp. 1-1, 2020. https://doi.org/10.1109/pesgm40551.2019.8974003.
[121] F. Milano, “An Open-Source Power System Analysis Toolbox,” IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1199-1206, 2005. https://doi.org/10.1109/TPWRS.2005.851911.
[122] S. Cole and R. Belmans, “MatDyn, A New Matlab-Based Toolbox for Power System Dynamic Simulation,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1129-1136, 2011. https://doi.org/10.1109/TPWRS.2010.2071888.
[123] H. K. Abdulkhader, J. Jacob, and A. T. Mathew, “Fractional-Order Lead-Lag Compensator-Based Multi-Band Power System Stabiliser Design using a Hybrid Dynamic GA-PSO Algorithm,” IET Generation, Transmission & Distribution, vol 12, no. 13, 2018. https://doi.org/10.1049/iet-gtd.2017.1087.
[124] K. Zhang, Z. Shi, Y. Huang, C. Qiu, and S. Yang, “SVC Damping Controller Design Based on Novel Modified Fruit Fly Optimization Algorithm,” IET Renewable Power Generation, vol 12, no.1, 2018. https://doi.org/10.1049/iet-rpg.2017.0401.
[125] M. Gheisarnejad, “An Effective Hybrid Harmony Search and Cuckoo Optimization Algorithm Based Fuzzy PID Controller for Load Frequency Control,” Applied Soft Computing, vol. 65, pp. 121-138, 2018. https://doi.org/10.1016/j.asoc.2018.01.007.
[126] Y. Chen et al., “Optimized Design Method for Grid-Current-Feedback Active Damping to Improve Dynamic Characteristic of LCL-type Grid-Connected Inverter,” International Journal of Electrical Power & Energy Systems, vol. 100, pp. 19-28, 2018. https://doi.org/10.1016/j.ijepes.2018.01.055.
[127] M. Fahim-Ul-Haque, M. R. Islam, M. Shafiullah, and M. S. Hossen, “Stability Enhancement of Single Machine Infinite Bus System with UPFC using Bat Algorithm,” Conference of Open Innovations Association, pp. 51-57, 2022. https://doi.org/10.23919/FRUCT54823.2022.9770924.
[128] A. W. Khawaja, N. A. M. Kamari, and M. A. A. M. Zainuri, “Design of a Damping Controller using The SCA Optimization Technique for The Improvement of Small Signal Stability of a Single Machine Connected to an Infinite Bus System,” Energies, vol. 14, no.11, 2021. https://doi.org/10.3390/en14112996.
[129] M. Mary Linda and N. Kesavan Nair, “A New-Fangled Adaptive Mutation Breeder Genetic Optimization of Global Multi-Machine Power System Stabilizer,” International Journal of Electrical Power & Energy Systems, vol. 44, no. 1, pp. 249-258, 2013. https://doi.org/10.1016/j.ijepes.2012.06.005.
[130] J. L. Domínguez-García, O. Gomis-Bellmunt, F. D. Bianchi, and A. Sumper, “Power oscillation Damping Supported by Wind Power: A Review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 17, pp. 4994-50006, 2012. https://doi.org/10.1016/j.rser.2012.03.063.
[131] R. K. Khadanga and J. K. Satapathy, “Time Delay Approach for PSS and SSSC Based Coordinated Controller Design using hybrid PSO-GSA algorithm,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 294-300, 2015. https://doi.org/10.1016/j.ijepes.2015.03.014.
[132] L. J. Cai and I. Erlich, “Simultaneous Coordinated Tuning of PSS and FACTS Damping Controllers in Large Power Systems,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 294-300, 2005. https://doi.org/10.1109/TPWRS.2004.841177.
[133] D. Mondal, A. Chakrabarti, and A. Sengupta, “Optimal Placement and Parameter Setting of SVC and TCSC using PSO to Mitigate Small Signal Stability Problem,” International Journal of Electrical Power & Energy Systems, vol. 42, no. 1, 2012. https://doi.org/10.1016/j.ijepes.2012.04.017.
[134] N. Niamul Islam, M. A. Hannan, H. Shareef, A. Mohamed, and M. A. Salam, “Comparative Study of Popular Objective Functions for Damping Power System Oscillations in Multimachine System,” The Scientific World Journal, vol, 2014, no. 1, 2014. https://doi.org/10.1155/2014/549094.
[135] N. N. Islam, M. A. Hannan, A. Mohamed, and H. Shareef, “Improved Power System Stability using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller,” PLoS One, 2016. https://doi.org/10.1371/journal.pone.0146277.
[136] H. Wang, B. Zhang, and Z. Hao, “Response Based Emergency Control System for Power System Transient Stability,” Energies, vol. 8, no. 12, 2015. https://doi.org/10.3390/en81212381.
[137] T. Lindi and F. Shewarega, “Adaptive Order and Step-Size Differential Transformation Method-Based Power System Transient Stability Simulation,” Australian Journal of Electrical and Electronics Engineering, pp. 1–14, 2025. https://doi.org/10.1080/1448837X.2024.2359210.
[138] B. Yang and Y. Sun, “Damping Factor-Based Delay Margin for Wide Area Signals in Power System Damping Control,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3501-3502, 2013. https://doi.org/10.1109/TPWRS.2013.2242699.
[139] H. Alkhatib and J. Duveau, “Dynamic Genetic Algorithms for Robust Design of Multimachine Power System Stabilizers,” Int. J. Electr. Power Energy Syst., 2013. https://doi.org/10.1016/j.ijepes.2012.08.080.
[140] A. Khodabakhshian and R. Hemmati, “Multi-Machine Power System Stabilizer Design by Using Cultural Algorithms,” International Journal of Electrical Power & Energy Systems, vol. 45, no. 1, pp. 242-251, 2013. https://doi.org/10.1016/j.ijepes.2012.07.049.
[141] S. Pereira, P. Ferreira, and A. I. F. Vaz, “Optimization Modeling to Support Renewables Integration in Power Systems,” Renewable and Sustainable Energy Reviews. 2016. https://doi.org/10.1016/j.rser.2015.10.116.
[142] A. R. Jordehi, “Optimization of Electric Distribution Systems: A review,” Renewable and Sustainable Energy Reviews. 2015. https://doi.org/10.1016/j.rser.2015.07.004.
[143] S. S. Refaat, H. Abu-Rub, A. P. Sanfilippo, and A. Mohamed, “Impact of Grid-Tied Large-Scale Photovoltaic System on Dynamic Voltage Stability of Electric Power Grids,” 2018. https://doi.org/10.1049/iet-rpg.2017.0219.
[144] R. Shah, N. Mithulananthan, R. C. Bansal, and V. K. Ramachandaramurthy, “A Review of Key Power System Stability Challenges for Large-Scale PV Integration,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 316-325, 2016. https://doi.org/10.1016/j.rser.2014.09.027.
[145] T. C. Yang, “Applying H∞ optimisation Method to Power System Stabilizer Design Part 1: Single-Machine Infinite-Bus Systems,” International Journal of Electrical Power & Energy Systems, vol. 19, no. 1, 1997. https://doi.org/10.1016/s0142-0615(96)00026-9.
[146] K. Ellithy, S. Said, and O. Kahlout, “Design of Power System Stabilizers Based on Μ-Controller for Power System Stability Enhancement,” International Journal of Electrical Power & Energy Systems, vol. 63, pp. 933-939, 2014. https://doi.org/10.1016/j.ijepes.2014.06.055.
[147] A. Lari and A. Khosravi, “An Evolutionary Approach to Design Practical Μ Synthesis Controllers,” International Journal of Control, Automation and Systems, vol. 11, pp. 167-174, 2013. https://doi.org/10.1007/s12555-012-0181-3.
[148] H. Bevrani, M. R. Feizi, and S. Ataee, “Robust Frequency Control in an Islanded Microgrid: H∞ and μ-Synthesis Approaches,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 706-717, 2016. https://doi.org/10.1109/TSG.2015.2446984.
[149] R. A. Jabr, B. C. Pal, N. Martins, and J. C. R. Ferraz, “Robust and Coordinated Tuning of Power System Stabilizer Gains Using Sequential Linear Programming,” IET Generation, Transmission & Distribution, vol. 4, no. 8, 2010. https://doi.org/10.1049/iet-gtd.2009.0669.
[150] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. https://doi.org/10.1126/science.220.4598.671.
[151] N. K. Jhankal and D. Adhyaru, “Bacterial Foraging Optimization Algorithm: A Derivative Free Technique,” Nirma University International Conference on Engineering, pp. 1-4, 2011. https://doi.org/10.1109/NUiConE.2011.6153240.
[152] M. R. Esmaili, R. A. Hooshmand, M. Parastegari, P. G. Panah, and S. Azizkhani, “New Coordinated Design of SVC and PSS for Multi-machine Power System Using BF-PSO Algorithm,” Procedia Technology, vol. 11, pp. 65-74, 2013. https://doi.org/10.1016/j.protcy.2013.12.163.
[153] M. F. Castoldi, D. S. Sanches, M. R. Mansour, N. G. Bretas, and R. A. Ramos, “A Hybrid Algorithm to Tune Power Oscillation Dampers for FACTS Devices in Power Systems,” Control Engineering Practice, vol. 24, pp. 25-32, 2014. https://doi.org/10.1016/j.conengprac.2013.11.001.
[154] D. E. Goldberg and J. H. Holland, “Genetic Algorithms and Machine Learning,” Machine Learning, vol. 3, pp. 95-99, 1988. https://doi.org/10.1023/A:1022602019183.
[155] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” Journal of Global Optimization, vol. 11, pp. 341-359, 1997. https://doi.org/10.1023/A:1008202821328.
[156] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a Gravitational Search Algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232–2248, 2009. https://doi.org/10.1016/j.ins.2009.03.004.
[157] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-Verse Optimizer: A Nature-Inspired Algorithm for Global Optimization,” Neural Computing and Applications, vol. 27, pp. 295-513, 2016. https://doi.org/10.1007/s00521-015-1870-7.
[158] H. Eskandar, A. Sadollah, A. Bahreininejad, and M. Hamdi, “Water Cycle Algorithm–A Novel Metaheuristic Optimization Method for Solving Constrained Engineering Optimization Problems,” Computers & Structures, vol. 110-111, pp. 151–166, 2012. https://doi.org/10.1016/j.compstruc.2012.07.010.
[159] M. Dehghani et al., “A Spring Search Algorithm Applied to Engineering Optimization Problems,” Applied Sciences, vol. 10, no. 18, 2020. https://doi.org/10.3390/APP10186173.
[160] W. Zhao, L. Wang, and Z. Zhang, “Atom Search Optimization and Its Application to Solve a Hydrogeologic Parameter Estimation Problem,” Knowledge-Based Systems, vol. 163, pp. 283-304, 2019. https://doi.org/10.1016/j.knosys.2018.08.030.
[161] F. S. Gharehchopogh, “Quantum-Inspired Metaheuristic Algorithms: Comprehensive Survey and Classification,” Artificial Intelligence Review, vol. 56, pp. 5479-5543, 2023. https://doi.org/10.1007/s10462-022-10280-8.
[162] M. Dehghani and H. Samet, “Momentum Search Algorithm: A New Meta-Heuristic Optimization Algorithm Inspired by Momentum Conservation Law,” SN Applied Sciences, vol. 2, 2020. https://doi.org/10.1007/s42452-020-03511-6.
[163] Z. Wei, C. Huang, X. Wang, T. Han, and Y. Li, “Nuclear Reaction Optimization: A Novel and Powerful Physics-Based Algorithm for Global Optimization,” IEEE Access, vol. 7, pp. 66084-66109, 2019. https://doi.org/10.1109/ACCESS.2019.2918406.
[164] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems,” Computer-Aided Design, vol. 43, no. 3, 2011. https://doi.org/10.1016/j.cad.2010.12.015.
[165] S. H. Samareh Moosavi and V. K. Bardsiri, “Poor and Rich Optimization Algorithm: A New Human-Based and Multi Populations Algorithm,” Engineering Applications of Artificial Intelligence, vol. 86, pp. 165-181, 2019. https://doi.org/10.1016/j.engappai.2019.08.025.
[166] F. A. Zeidabadi, M. Dehghani, P. Trojovský, Š. Hubálovský, V. Leiva, and G. Dhiman, “Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems,” Computer, Materials & Continua, vol. 72, no. 1, 2022. https://doi.org/10.32604/cmc.2022.024736.
[167] Y. Shi, “Brain Storm Optimization Algorithm,”Advances in Swarm Intelligence: Second International Conference, pp. 303–309, 2011. https://doi.org/10.1007/978-3-642-21515-5_36.
[168] T. S. L. V Ayyarao et al., “War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization,” IEEE Access, vol. 10, pp. 25073–25105, 2022. https://doi.org/10.1109/ACCESS.2022.3153493.
[169] M. Dorigo and C. Blum, “Ant Colony Optimization Theory: A survey,” Theoretical Computer Science, vol. 344, no. 2-3, pp 243-278, 2005. https://doi.org/10.1016/j.tcs.2005.05.020.
[170] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, 2014. https://doi.org/10.1016/j.advengsoft.2013.12.007.
[171] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and A. H. Gandomi, “Marine Predators Algorithm: A nature-inspired metaheuristic,” Expert Systems with Applications, 2020. https://doi.org/10.1016/j.eswa.2020.113377.
[172] M. Braik, A. Hammouri, J. Atwan, M. A. Al-Betar, and M. A. Awadallah, “White Shark Optimizer: A Novel Bio-Inspired Meta-Heuristic Algorithm for Global Optimization Problems,” Knowledge-Based Systems, vol. 243, 2022. https://doi.org/10.1016/j.knosys.2022.108457.
[173] L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, and A. H. Gandomi, “Reptile Search Algorithm (RSA): A Nature-Inspired Meta-Heuristic Optimizer,” Expert Systems with Applications, vol. 191, 2022. https://doi.org/10.1016/j.eswa.2021.116158.
[174] S. Zangbari Koohi, N. A. W. Abdul Hamid, M. Othman, and G. Ibragimov, “Raccoon Optimization Algorithm,” IEEE Access, vol. 7, pp. 5383-5399, 2019. https://doi.org/10.1109/ACCESS.2018.2882568.
[175] B. Abdollahzadeh, F. S. Gharehchopogh, and S. Mirjalili, “African Vultures Optimization Algorithm: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems,” Computers & Industrial Engineering, vol. 158, 2021. https://doi.org/10.1016/j.cie.2021.107408.
[176] F. S. Gharehchopogh, B. Farnad, and A. Alizadeh, “A Modified Farmland Fertility Algorithm for Solving Constrained Engineering Problems,” Concurrency and Computation: Practice and Experience, vol. 33, no. 17, 2021. https://doi.org/10.1002/cpe.6310.
[177] W. Aribowo, “Slime Mould Algorithm Training Neural Network in Automatic Voltage Regulator,” Trends in Sciences, vol. 19, no. 3, pp. 1–11, 2022. https://doi.org/10.48048/tis.2022.2145.
[178] B. Abdollahzadeh, F. S. Gharehchopogh, N. Khodadadi, and S. Mirjalili, “Mountain Gazelle Optimizer: A new Nature-inspired Metaheuristic Algorithm for Global Optimization Problems,” Advances in Engineering Software, vol. 174, p. 103282, 2022. https://doi.org/10.1016/j.advengsoft.2022.103282
[179] J. Xue and B. Shen, “A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm,” Systems Science & Control Engineering, vol. 8, no. 1, 2020. https://doi.org/10.1080/21642583.2019.1708830.
[180] S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51-67, 2016. https://doi.org/10.1016/j.advengsoft.2016.01.008.
[181] B. Abdollahzadeh, F. Soleimanian Gharehchopogh, and S. Mirjalili, “Artificial Gorilla Troops Optimizer: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems,” International Journal of Intelligent Systems, vol. 36, no. 10, 2021. https://doi.org/10.1002/int.22535.
[182] P. Trojovský and M. Dehghani, “Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications,” Sensors, 2022. https://doi.org/10.3390/s22030855.
[183] H. A. Shehadeh, “Bermuda Triangle Optimizer (BTO): A Novel Metaheuristic Method for Global Optimization,” International Journal of Advances in Soft Computing and its Applications, vol. 17, no. 2, 2025. https://doi.org/10.15849/IJASCA.250730.01
[184] Y. Fu, D. Liu, J. Chen, and L. He, “Secretary Bird Optimization Algorithm: A New Metaheuristic for Solving Global Optimization Problems,” Artificial Intelligence Review, vol. 57, no. 5, p. 123, 2024, doi: https://doi.org/10.1007/s10462-024-10729-y.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dauda Dahiru, Aliyu Sabo, Abdul Wahab Noor Izzri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

