Design Lighting System Based on PID Control and Node-RED

Authors

  • Muhammad Fikrul Ma’arif Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya

DOI:

https://doi.org/10.26740/vubeta.v1i3.35454

Keywords:

Light Intensity Control, PID Control, ESP32, BH1750 Sensor, Node-red

Abstract

In general, lighting systems use the on/off principle, by turning on the lights in a dark room and turning off the lights in a bright room. This has drawbacks in terms of effectiveness, because it does not pay attention to external influences and lighting, namely sunlight. To overcome this problem, automatic light intensity control is needed which still refers to the surrounding lighting. The aim of this research is to understand the performance of light intensity control devices in lighting systems using the PID method. Comparing the measurements of the BH1750 sensor with a lux meter measuring instrument, an average error value of 6.61% was obtained. Searching for PID parameters uses the trial and errors method with 5 attempts on each parameter. In testing each parameter, optimal results were obtained for the PID parameters, namely Kp = 0.10 Ki = 0.18 Kd = 0.10 with a system response value of 7.91, settling time of 14.63 and overshoot of 0.97

References

[1] C. Graf, P. Pärisch, A. Marszal-Pomianowska, M. Frandsen, B. Bendinger, and A. Cadenbach, “Domestic hot water systems in well-insulated residential buildings: A comparative simulation study on efficiency and hygiene challenges,” Energy, vol. 313, 2024, doi: 10.1016/j.energy.2024.133587.

[2] S. Shojaee Barjoee and S. Gendler, “Sustainable illumination: Experimental and simulation analysis of illumination for workers wellbeing in the workplace,” Heliyon, vol. 10, no. 24, 2024, doi: 10.1016/j.heliyon.2024.e40745.

[3] R. Liang and P.-H. Wang, “Enhancing energy efficiency in buildings, optimization method and building management systems application for lower CO2 emissions,” Energy, vol. 313, 2024, doi: 10.1016/j.energy.2024.134054.

[4] S. Zhu, Z. Li, K. Long, S. Zhou, and Z. Zhou, “Study of illumination and reflection performances on light-colored pavement materials,” Constr. Build. Mater., vol. 456, 2024, doi: 10.1016/j.conbuildmat.2024.139239.

[5] P. Mahmoudzadeh, W. Hu, W. Davis, and D. Durmus, “Spatial efficiency: An outset of lighting application efficacy for indoor lighting,” Build. Environ., vol. 255, p. 111409, 2024.https://doi.org/10.1016/j.buildenv.2024.111409

[6] J. Shi et al., “Electrically controlled all‐antiferromagnetic tunnel junctions on silicon with large room‐temperature magnetoresistance,” Adv. Mater., vol. 36, no. 24, p. 2312008, 2024.

[7] R. S. Shetty, S. G. Prabhu, G. B. Kamath, S. R. Shetty, N. R. Devi, and L. L. R. Rodrigues, “Assessing the Influence of Ambient Features on Staff Satisfaction in the Healthcare Environment,” J. Des. Built Environ., vol. 24, no. 3, pp. 18–41, 2024, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85215285504&partnerID=40&md5=890c3c08598f23b546d690e2f7730398

[8] Y. E. Ahmed, J. Pasupuleti, F. K. Alhousni, F. B. Ismail, and I. Hossain, “Designing integrated intelligent control systems for photovoltaic cooling and dust panels based on IoT: Kirkuk study, Iraq,” Int. J. Comput. Exp. Sci. Eng., vol. 11, no. 1, pp. 1191–1202, 2024, doi: 10.22399/ijcesen.1092.

[9] B. Chatterjee, K. K. Dutta, N. K. Kumar, and P. D. Moyya, “Iot-based monitoring of solar power generation and analysis using machine learning,” in Sustainability Principles and Applications in Engineering Practice, 2024, pp. 103–127. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202128110&partnerID=40&md5=7004b7736974da8cf6fc92b8c8b8f8d6

[10] F. Nicoletti, G. Azzarito, and D. Sylaj, “Improving cooling efficiency in domestic refrigerators: a passive cooling system exploiting external air circulation,” Int. J. Refrig., vol. 159, pp. 99–111, 2024, doi: 10.1016/j.ijrefrig.2023.12.022.

[11] A. F. Díaz, B. Prieto, J. J. Escobar, and T. Lampert, “Vampire: A smart energy meter for synchronous monitoring in a distributed computer system,” J. Parallel Distrib. Comput., vol. 184, 2024, doi: 10.1016/j.jpdc.2023.104794.

[12] U. K. Rajanala, N. K. B. Chinni, G. Sandaka, and R. Shaik, “Hand Gesture Recognition for Smart Control of Electrical Appliances Using Computer Vision,” in 2024 International Conference on Smart Technologies for Sustainable Development Goals, ICSTSDG 2024, 2024. doi: 10.1109/ICSTSDG61998.2024.11026353.

[13] N. Krishna Chaitanya, V. Suneel Reddy, K. Sreelakshmi, T. Abhinaya Keerthi, R. Poojitha, and G. Rajeswari, “The Hand Glove Enabling Voice and Text Communication,” in Lecture Notes in Networks and Systems, 2024, pp. 35–44. doi: 10.1007/978-981-97-2031-6_4.

[14] A. Malaji, B. Gulagannavar, C. Patil, P. Siddasamudra, and V. Rayar, “Wireless Radiance: LoRaWAN-Enabled Home Automation System,” in 2024 1st International Conference on Software, Systems and Information Technology, SSITCON 2024, 2024. doi: 10.1109/SSITCON62437.2024.10796608.

[15] A. K. Shukla, P. Kansal, and J. Parkash, “Enhancing Efficiency and Functionality of Voice-Controlled Cars Through NLP Techniques and Additional Features,” in Lecture Notes in Networks and Systems, 2024, pp. 119–133. doi: 10.1007/978-981-97-6588-1_10.

[16] A. Bansal, S. Sharma, A. N. Shukla, and A. Badhoutiya, “A Comprehensive Analysis of Cloud Computing in Wireless Communications,” in 2024 2nd International Conference on Disruptive Technologies, ICDT 2024, 2024, pp. 1228–1233. doi: 10.1109/ICDT61202.2024.10489271.

[17] B. K. Dakua and B. B. Pati, “PIλDµ Controllers for Suppression of Limit Cycle in a Plant with Time Delay and Backlash Nonlinearity,” Int. J. Automot. Sci. Technol., vol. 8, no. 4, pp. 506–526, 2024, doi: 10.30939/ijastech..1471847.

[18] M. Abishek, N. Amutha Prabha, and J. K. Goyal, “Voltage regulation of auxiliary power units in electric vehicle applications using H∞ based PI controller with regional pole placement,” Energy, vol. 313, 2024, doi: 10.1016/j.energy.2024.133883.

[19] S. Cao, C. Liu, C. Wang, L. Sun, and S. Wang, “Nonlinear Vibration and Stiffness Characteristics Analysis of Maglev Train Based on Cubic Displacement Control,” Int. J. Struct. Stab. Dyn., vol. 24, no. 24, 2024, doi: 10.1142/S0219455424502791.

[20] R. Sakthivel, N. Manish, V. Ganesh, A. K. B. Senthilraj, S. S. Kumar, and A. Abishek, “Modelling and Simulation of a Two-Wheeler Anti-Lock Braking System with an Intelligent Controller,” Int. J. Veh. Struct. Syst., vol. 16, no. 5, pp. 719–722, 2024, doi: 10.4273/ijvss.16.5.13.

[21] Y. Zhou, B. B. Aydin, F. Zhang, M. A. N. Hendriks, and Y. Yang, “A lattice modelling framework for fracture-induced acoustic emission wave propagation in concrete,” Eng. Fract. Mech., vol. 312, 2024, doi: 10.1016/j.engfracmech.2024.110589.

[22] S. Uma Maheswari, S. B. G. Thilak Babu, M. Sharma, S. Natarajan, S. Neelima, and H. S. Gill, “Leveraging quantum networks for adaptive learning systems in AI: Exploring the genetic framework of back pain and its quantum utilization,” in AI and Quantum Network Applications in Business and Medicine, 2024, pp. 235–250. doi: 10.4018/979-8-3693-8135-9.ch014.

[23] C. Ananth, O. I. Khalaf, and J. Anand, AI and quantum network applications in business and medicine. 2024. doi: 10.4018/979-8-3693-8135-9.

[24] Y. Hou et al., “Velocity and trajectory tracking control model for underactuated UUVs through coupling of direct CFD and PID control algorithm,” Ocean Eng., vol. 314, 2024, doi: 10.1016/j.oceaneng.2024.119775.

[25] A. N. Ribeiro and D. M. Muñoz, “Neural network controller for hybrid energy management system applied to electric vehicles,” J. Energy Storage, vol. 104, 2024, doi: 10.1016/j.est.2024.114502.

[26] S. Chen, “DC Motor Control in Noisy Environments: A Comparative Study of Wavelet MRPID vs. CNN-Attention Integrated PID,” in AIP Conference Proceedings, 2024. doi: 10.1063/5.0224171.

[27] H. Zhang, “Research on the comparison of PD control, PI control and PID control in CNC machine tools,” in AIP Conference Proceedings, 2024. doi: 10.1063/5.0222473.

[28] T. K. Roy and A. M. T. Oo, “Enhancing grid frequency regulation in low inertia modern multi-area power systems using cascaded non-integer control approaches with BESS-based virtual inertia,” IET Renew. Power Gener., vol. 18, no. S1, pp. 4602–4620, 2024, doi: 10.1049/rpg2.13169.

[29] P. Sharma, D. K. Palwalia, A. K. Sharma, N. Priyadarshi, and S. Padmanaban, “Coati optimized FOPID controller for non-isolated DC–DC converters in EV charging application,” IET Power Electron., vol. 17, no. 16, pp. 2771–2784, 2024, doi: 10.1049/pel2.12798.

[30] A. H. A. Hegazy, M. M. Kaldas, A. M. A. Soliman, and A. S. Huzayyin, “Modeling and Optimization of Regenerative MacPherson Strut,” SAE Int. J. Veh. Dyn. Stability, NVH, vol. 9, no. 1, pp. 85–104, 2024, doi: 10.4271/10-09-01-0005.

[31] S. Cuoghi, L. K. Pittala, R. Mandrioli, V. Cirimele, M. Ricco, and G. Grandi, “Model-based adaptive control of modular DAB converter for EV chargers,” IET Power Electron., vol. 17, no. 16, pp. 2669–2685, 2024, doi: 10.1049/pel2.12709.

[32] Y. Hu, “Optimizing Stability in Industrial Robotic Arms: A PID Control Simulation,” in AIP Conference Proceedings, 2024. doi: 10.1063/5.0227008.

[33] X. Zhou, Y. Zheng, T. Xu, B. Xu, W. Liu, and Q. Chen, “A nonlinear hierarchical general predictive governing control scheme for pumped storage units,” J. Energy Storage, vol. 103, 2024, doi: 10.1016/j.est.2024.114390.

[34] L. Nandhyala, L. C. Saikia, and S. Rajshekar, “Performance improvement and control optimization in grid-integrated PV source with energy storage systems,” J. Energy Storage, vol. 103, 2024, doi: 10.1016/j.est.2024.114517.

[35] Z. He, S. Jia, and X. Zhu, “Improved Harmony Search Genetic Algorithm for Optimizing Robot Arm Controllers,” in ACM International Conference Proceeding Series, 2024, pp. 543–547. doi: 10.1145/3700906.3700993.

[36] G. Madan, A. V Vishnu, J. K. Chandra, R. Ashutosh, K. G. Kumar, and A. K. N. Teja, “Node red platform based solar panel cleaning rover-design and fabrication,” in AIP Conference Proceedings, 2024. doi: 10.1063/5.0237010.

[37] L. M. Pires and J. Gomes, “River Water Quality Monitoring Using LoRa-Based IoT,” Designs, vol. 8, no. 6, 2024, doi: 10.3390/designs8060127.

[38] Y. Zhang, “Research on V2V-based Cooperative Collision Avoidance System for Autonomous Driving,” in ACM International Conference Proceeding Series, 2024, pp. 281–285. doi: 10.1145/3697467.3697662.

[39] A. A. Mohamed, M. M. Ahmed, A. A. Ali, and A. A. Afwah, “Smart Classroom Automation System,” SSRG Int. J. Electr. Electron. Eng., vol. 11, no. 11, pp. 131–138, 2024, doi: 10.14445/23488379/IJEEE-V11I11P114.

[40] F. Aydin and K. Sel, “Adsorption of Ethylene and 1-methylcyclopropene (1-MCP) on Al-doped Graphene Structure: A DFT Study for Gas Sensing Application,” J. Turkish Chem. Soc. Sect. A Chem., vol. 11, no. 4, pp. 1535–1544, 2024, doi: 10.18596/jotcsa.1492945.

[41] C. M. C. Razali, S. Samsudin, N. Z. Mahabob, and M. Aalayamani, “Design Low-Cost IoT Smart Home System with Comfort and Humidity Control using NodeMCU ESP 32 Microcontroller,” J. Adv. Res. Micro Nano Eng., vol. 26, no. 1, pp. 66–82, 2024, doi: 10.37934/armne.26.1.6682.

[42] P. L. Jethi, F. H. Pin, and E. A. Kumar, “Engineering Laboratory IAQ Monitoring: A Real-Time Solution using Raspberry PI and Grafana Dashboard,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 124, no. 2, pp. 53–70, 2024, doi: 10.37934/arfmts.124.2.5370.

[43] M. G. Mejía-Méndez, P. C. Cifuentes-Delgado, S. D. Gómez, C. C. Segura, N. Ornelas-Soto, and J. F. Osma, “Portable Miniaturized IoT-Enabled Point-of-Care Device for Electrochemical Sensing of Zopiclone in Cocktails,” Biosensors, vol. 14, no. 11, 2024, doi: 10.3390/bios14110557.

[44] Y. Sari et al., “Comparing the Accuracy of INA219, PZEM-004T, and MAX471 Sensors for Measuring Current and Voltage of Internet of Things-Based Solar Panels,” in 2024 Ninth International Conference on Informatics and Computing (ICIC), IEEE, 2024, pp. 1–6. https://doi.org/10.1109/ICIC64337.2024.10956405

[45] A. K. Anilkumar, A. Joseph, and J. Paul, “AN IoT-BASED REAL-TIME MICROCLIMATE MONITORING AND CONTROLLING SYSTEM FOR GREENHOUSE,” Environ. Eng. Manag. J., vol. 23, no. 12, pp. 2567–2584, 2024, doi: 10.30638/eemj.2024.206.

[46] S. Xu et al., “Design and Application Research of a UAV-Based Road Illuminance Measurement System,” Automation, vol. 5, no. 3, pp. 407–431, 2024, doi: 10.3390/automation5030024.

[47] L.-M. Shih, H.-L. Tsai, and C.-Y. Tsai, “Design and Evaluation of Wireless DYU Air Box for Environment-Monitoring IoT System on Da-Yeh University Campus,” Appl. Sci., vol. 14, no. 5, 2024, doi: 10.3390/app14052201.

[48] D. Dobrilovic, J. Pekez, V. Ognjenovic, and E. Desnica, “Analysis of Using Machine Learning Techniques for Estimating Solar Panel Performance in Edge Sensor Devices,” Appl. Sci., vol. 14, no. 3, 2024, doi: 10.3390/app14031296.

Downloads

Published

2024-12-15

How to Cite

[1]
M. Fikrul Ma’arif, “Design Lighting System Based on PID Control and Node-RED”, Vokasi Unesa Bull. Eng. Technol. Appl. Sci., vol. 1, no. 3, pp. 1–8, Dec. 2024.
Abstract views: 63 , PDF Downloads: 55