Design and Control of a Seaweed Dryer Prototype using a Hybrid Power Source
DOI:
https://doi.org/10.26740/vubeta.v3i1.44016Keywords:
Seaweed Dryer, Hybrid Power, Solar Panel, Wind Energy, XH-M609 ModuleAbstract
This study presents the design and control of a seaweed dryer prototype powered by a hybrid energy source combining wind and photovoltaic (PV) systems. The prototype is developed to improve the efficiency and sustainability of seaweed drying processes in coastal and remote areas with limited grid access. The control system integrates several sensors and switch modules to enhance automation and operational reliability. A Low Voltage Disconnect (XH-M609) module is employed to protect the battery system by disconnecting the load when voltage drops below a safe threshold. A photocell sensor is used to detect sunlight intensity, allowing the system to operate the dryer only during adequate daylight, thereby conserving energy. Additionally, a rain drop sensor is integrated to pause the drying process during rainfall to prevent rehydration of the seaweed. A relay module is used to control the switching of dryer components based on real-time sensor feedback. The entire system is designed for both automatic and manual modes, ensuring flexibility for user intervention when necessary. Simulation and field test results show that the prototype can effectively utilize hybrid renewable energy sources while maintaining protection and adaptive control based on environmental conditions, offering a cost-efficient and eco-friendly solution for small-scale seaweed farmers
References
[1] S. Suherman, H. Rizki, N. Rauf, & E. Susanto, "Performance Study of Hybrid Solar Dryer with Auxiliary Heater for Seaweed Drying", Journal of Physics: Conference Series, vol. 1295, no. 1, pp. 012002, 2019. https://doi.org/10.1088/1742-6596/1295/1/012002
[2] A. Suwandi, A. Fachrudin, & D. Setyanto, "Design of a Seaweed Draining and Drying Machine Using Hybrid Energy", Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, pp. 133-148, 2025. https://doi.org/10.35814/asiimetrik.v7i2.8636
[3] W. Agustiono, F. Wahyu, & W. Findiastuti, "An Internet of Things-based Solar Dryer: A Conceptual Design for Seaweed Cultivation in Madura", BIO Web of Conferences, vol. 146, pp. 01032, 2024. https://doi.org/10.1051/bioconf/202414601032
[4] H.-K. Phang, C.-M. Chu, S. Kumaresan, M. M. Rahman, & S. M. Yasir, "Preliminary Study of Seaweed Drying under A Shade and in A Natural Draft Solar Dryer", International Journal of Science and Engineering, vol. 8, no. 1, pp. 10–14, 2015. doi: https://doi.org/10.12777/ijse.8.1.10-14
[5] R. Sánchez, I. Kougias, M. Moner‐Girona, F. Fahl, & A. Jäger‐Waldau, "Assessment of Floating Solar Photovoltaics Potential in Existing Hydropower Reservoirs in Africa", Renewable Energy, vol. 169, pp. 687-699, 2021. https://doi.org/10.1016/j.renene.2021.01.041
[6] A. Naigam, I. Ridzuan, A. Tan, A. Abdullah, W. Ismail, & J. Janaun, "Design, Development and Performance Evaluation of a Large-Scale Hybrid Solar Dryer", IOP Conference Series: Materials Science and Engineering, vol. 1070, no. 1, pp. 012016, 2021. https://doi.org/10.1088/1757-899x/1070/1/012016
[7] E. Elangovan and S. Natarajan, "Experimental Study on Drying Kinetics of Ivy Gourd using Solar Dryer", Journal of Food Process Engineering, vol. 44, no. 7, 2021. https://doi.org/10.1111/jfpe.13714
[8] P. Chen, W. Chen, C. Lee, & J. Wu, "Comprehensive Review of Crystalline Silicon Solar Panel Recycling: From Historical Context to Advanced Techniques", Sustainability, vol. 16, no. 1, pp. 60, 2023. https://doi.org/10.3390/su16010060
[9] A. Rehman, M. Iqbal, M. Bhopal, M. Khan, F. Hussain, J. Iqbal et al., "Development and Prospects of Surface Passivation Schemes for High-Efficiency C-Si Solar Cells", Solar Energy, vol. 166, pp. 90-97, 2018. https://doi.org/10.1016/j.solener.2018.03.025
[10] R. Parthiban and P. Ponnambalam, "An Enhancement of the Solar Panel Efficiency: A Comprehensive Review", Frontiers in Energy Research, vol. 10, 2022. https://doi.org/10.3389/fenrg.2022.937155
[11] B. Merzah, Z. Al-Makhyoul, A. Abdullah, S. Ayed, & H. Majdi, "Enhancing Solar Panel Cooling and Thermal Efficiency Using Nanoparticle-Enhanced Phase Change Materials", Mathematical Modelling of Engineering Problems, vol. 11, no. 6, pp. 1547-1557, 2024. https://doi.org/10.18280/mmep.110615
[12] G. Granata, P. Altimari, F. Pagnanelli, & J. Greef, "Recycling of Solar Photovoltaic Panels: Techno-Economic Assessment in Waste Management Perspective", Journal of Cleaner Production, vol. 363, pp. 132384, 2022. https://doi.org/10.1016/j.jclepro.2022.132384
[13] F. Hajiahmadi, M. Jafari, & M. Reyhanoglu, "Machine Learning-Based Control of Autonomous Vehicles for Solar Panel Cleaning Systems in Agricultural Solar Farms", AgriEngineering, vol. 6, no. 2, pp. 1417-1435, 2024. https://doi.org/10.3390/agriengineering6020081
[14] H. Shin, K. Khoshelham, K. Lee, S. Jung, D. Kim, & W. Lee, "Effect of Incidence Angle on Temperature Measurement of Solar Panel with Unmanned Aerial Vehicle-Based Thermal Infrared Camera", Remote Sensing, vol. 16, no. 9, pp. 1607, 2024. https://doi.org/10.3390/rs16091607
[15] S. Khan, S. Chakraborty, K. Dash, A. Dar, F. Shawl, S. Dash et al., "Review of Solar Greenhouse Drying Systems in Conjunction with Hybrid Technological Features, Designs, Operations, and Economic Implications for Agro‐Food Product Processing Application", Energy Technology, vol. 12, no. 8, 2024. https://doi.org/10.1002/ente.202400176
[16] S. Hidayat, K. Shabiya, S. Kadiran, I. Mujahidin, M. Prabowo, A. Nursyahid et al., "Real-Time Web-Based Monitoring System for Temperature, Humidity, and Solar Panels in Ramie Drying Facilities", Scientific Journal of Informatics, vol. 11, no. 1, pp. 69-80, 2024. https://doi.org/10.15294/sji.v11i1.47234
[17] A. Sabo, D. Dahiru, & N. Wahab, "A Modelling and Simulation of Damping Controller In DFIG AND PMSG Integrated With A Convectional Grid: A Review", Vokasi Unesa Bulletin of Engineering, Technology and Applied Science, vol. 2, no. 2, pp. 148-174, 2025. https://doi.org/10.26740/vubeta.v2i2.34749
[18] D. Sadeghi, N. Amiri, M. Marzband, A. Abusorrah, & K. Sedraoui, "Optimal sizing of hybrid renewable energy systems by considering power sharing and electric vehicles", International Journal of Energy Research, vol. 46, no. 6, p. 8288-8312, 2022. https://doi.org/10.1002/er.7729
[19] D. Rekioua, Z. Mokrani, K. Kakouche, A. Oubelaid, T. Rekioua, M. Alhazmi et al., "Coordinated Power Management Strategy for Reliable Hybridization of Multi-Source Systems using Hybrid MPPT Algorithms", Scientific Reports, vol. 14, no. 1, 2024. https://doi.org/10.1038/s41598-024-60116-4
[20] D. Rekioua, Z. Mokrani, K. Kakouche, T. Rekioua, A. Oubelaid, P. Logerais et al., "Optimization and Intelligent Power Management Control for An Autonomous Hybrid Wind Turbine Photovoltaic Diesel Generator with Batteries", Scientific Reports, vol. 13, no. 1, 2023. https://doi.org/10.1038/s41598-023-49067-4
[21] A. Krishna, A. Kumar, A. Krushna, J. Shanmugapriyan, & C. Keertana, "The Study of Solar and Wind Power Systems under Different Weather Conditions", E3S Web of Conferences, vol. 547, pp. 03009, 2024. https://doi.org/10.1051/e3sconf/202454703009
[22] A. Bazzi, H. Hafdaoui, A. Khallaayoun, K. Mehta, K. Ouazzani, & W. Zörner, "Optimization Model of Hybrid Renewable Energy Generation for Electric Bus Charging Stations", Energies, vol. 17, no. 1, pp. 53, 2023. https://doi.org/10.3390/en17010053
[23] T. Pop, C. Ungureanu, R. Pentiuc, C. Afanasov, V. Ifrim, P. Atănăsoaeet al., "Off-Grid Hybrid Renewable Energy System Operation in Different Scenarios for Household Consumers", Energies, vol. 16, no. 7, pp. 2992, 2023. https://doi.org/10.3390/en16072992
[24] A. Khamees, A. Abdelaziz, M. Eskaros, M. Attia, & M. Sameh, "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions", Sustainability, vol. 15, no. 1, pp. 334, 2022. https://doi.org/10.3390/su15010334
[25] A. Mohammed, C. Komolafe, & A. Simons, "Advances in Solar Drying Technologies: A Comprehensive Review of Designs, Applications, and Sustainability Perspectives", Solar Compass, vol. 17, pp. 100153, 2025. https://doi.org/10.1016/j.solcom.2025.100153
[26] M. Hiloidhari, V. Vijay, R. Banerjee, D. Baruah, & A. Rao, "Energy-Carbon-Water Footprint of Sugarcane Bioenergy: A District-Level Life Cycle Assessment in the State of Maharashtra, India", Renewable and Sustainable Energy Reviews, vol. 151, pp. 111583, 2021. https://doi.org/10.1016/j.rser.2021.111583
[27] V. Andrei, Q. Wang, T. Uekert, S. Bhattacharjee, & E. Reisner, "Solar Panel Technologies for Light-to-Chemical Conversion", Accounts of Chemical Research, vol. 55, no. 23, pp. 3376-3386, 2022. https://doi.org/10.1021/acs.accounts.2c00477
[28] F. Polito, G. Huang, & C. Markides, "A Building‐Integrated Hybrid Photovoltaic‐Thermal (PV‐T) Window for Synergistic Light Management, Electricity and Heat Generation", Advanced Science, vol. 12, no. 3, 2024. https://doi.org/10.1002/advs.202408057
[29] E. Tonadi, N. Niharman, & B. Wiranto, "Performance Analysis of Solar Photovoltaic Thermal (PV/T) Dryer for Drying Moringa Leaf", JTTM Jurnal Terapan Teknik Mesin, vol. 5, no. 1, 2024. https://doi.org/10.37373/jttm.v5i1.777
[30] J. Zhao, S. Huang, Q. Cai, F. Zeng, & Y. Cai, "Research on Distributed Renewable Energy Power Measurement and Operation Control Based on Cloud-Edge Collaboration", EAI Endorsed Transactions on Energy Web, vol. 11, 2024. https://doi.org/10.4108/ew.5520
[31] B. Li, W. Cao, T. Tang, B. Qi, J. Zhao, & C. Liu, "QoS‐Based Bi‐Level Demand Response for Data Center to Facilitate Renewable Energy Integration", IEEJ Transactions on Electrical and Electronic Engineering, vol. 19, no. 5, pp. 625-639, 2024. https://doi.org/10.1002/tee.24024
[32] A. Noppakant and B. Plangklang, "Improving Energy Management through Demand Response Programs for Low-Rise University Buildings", Sustainability, vol. 14, no. 21, pp. 14233, 2022. https://doi.org/10.3390/su142114233
[33] M. Abdelghany, A. Al‐Durra, & F. Gao, "A Coordinated Optimal Operation of a Grid-Connected Wind-Solar Microgrid Incorporating Hybrid Energy Storage Management Systems", IEEE Transactions on Sustainable Energy, vol. 15, no. 1, pp. 39-51, 2024. https://doi.org/10.1109/tste.2023.3263540
[34] K. Singh, A. Chaudhary, & K. Chaudhary, "Three-phase AC-DC Converter for Direct-drive PMSG-based Wind Energy Conversion System", Journal of Modern Power Systems and Clean Energy, vol. 11, no. 2, pp. 589-598, 2023. https://doi.org/10.35833/mpce.2022.000060
[35] C. Wang, Q. Zhao, & R. Tian, "Short-Term Wind Power Prediction Based on a Hybrid Markov-Based PSO-BP Neural Network", Energies, vol. 16, no. 11, pp. 4282, 2023. https://doi.org/10.3390/en16114282
[36] F. Duan, M. Eslami, M. Khajehzadeh, A. Basem, D. Jasim, & S. Palani, "Optimization of A Photovoltaic/Wind/Battery Energy-based Microgrid in Distribution Network using Machine Learning and Fuzzy Multi-Objective Improved Kepler Optimizer Algorithms", Scientific Reports, vol. 14, no. 1, 2024. https://doi.org/10.1038/s41598-024-64234-x
[37] Q. Li, L. Zhang, C. Zhang, Y. Tian, Y. Fan, B. Li et al., "Compact, Robust, and Regulated-Output Hybrid Generators for Magnetic Energy Harvesting and Self-Powered Sensing Applications in Power Transmission Lines", Energy & Environmental Science, vol. 17, no. 8, pp. 2787-2799, 2024. https://doi.org/10.1039/d3ee04563c
[38] Q. Zeng, Z. Pan, Q. Zhang, T. Han, W. Zheng, J. Li et al., "CSR Evolution: New Opportunities and Challenges for IoT in Advancing ESG Practices", International Journal of Frontiers in Engineering Technology, vol. 6, no. 3, 2024. https://doi.org/10.25236/ijfet.2024.060301
[39] K. Adeusi, A. Adegbola, P. Amajuoyi, M. Adegbola, & L. Benjamin, "The Potential of IoT to Transform Supply Chain Management Through Enhanced Connectivity and Real-Time Data", World Journal of Advanced Engineering Technology and Sciences, vol. 12, no. 1, pp. 145-151, 2024. https://doi.org/10.30574/wjaets.2024.12.1.0202
[40] R. Delfianti, V. Tazayul, B. Mustaqim, F. Nusyura, & C. Harsito, "Internet of Things (IoT) Based Electrical Power Monitoring System for Solar Power Plants Using Telegram Application", Vokasi Unesa Bulletin of Engineering, Technology and Applied Science, vol. 2, no. 3, pp. 428-443, 2025. https://doi.org/10.26740/vubeta.v2i3.39405
[41] U. Lakhina, N. Badruddin, I. Elamvazuthi, A. Jangra, T. Huy, & J. Guerrero, "An Enhanced Multi-Objective Optimizer for Stochastic Generation Optimization in Islanded Renewable Energy Microgrids", Mathematics, vol. 11, no. 9, pp. 2079, 2023. https://doi.org/10.3390/math11092079
[42] M. Wang, H. Gao, D. Pan, X. Sheng, C. Xu, & Q. Wang, "Multi-Energy Load Collaborative Optimization of the Active Building Energy Management Strategy", Energies, vol. 17, no. 11, pp. 2569, 2024. https://doi.org/10.3390/en17112569
[43] B. Mahdi, N. Sulaiman, M. Shehab, S. Shafie, H. Hizam, & S. Hassan, "Optimization of Operating Cost and Energy Consumption in a Smart Grid", IEEE Access, vol. 12, pp. 18837-18850, 2024. https://doi.org/10.1109/access.2024.3354065
[44] Y. Wang, Z. Yang, X. Zhao, H. Liu, D. Wang, & C. Liu, "Fine-Grained Modeling and Coordinated Scheduling of Source-Load With Energy-Intensive Electro-Fused Magnesium Loads", IEEE Access, vol. 12, pp. 47702-47712, 2024. https://doi.org/10.1109/access.2024.3381781
[45] M. Kavindi, K. Amaratunga, E. Ekanayake, A. Fernando, & A. Abesinghe, "CFD Simulation of Airflow Distribution in a Heat Pump-Assisted Deep-Bed Paddy Dryer", Applied Engineering in Agriculture, vol. 38, no. 1, pp. 1-8, 2022. https://doi.org/10.13031/aea.14483
[46] B. Li, S. Feng, Q. He, Y. Zhu, Z. Hu, Y. Jiang et al., "Numerical Simulation of Rice Drying Process in a Deep Bed under an Angular Air Duct", Journal of Food Process Engineering, vol. 46, no. 12, 2023. https://doi.org/10.1111/jfpe.14438
[47] A. Ahmad, O. Prakash, A. Kumar, R. Chatterjee, S. Sharma, V. Kumar et al., "A Comprehensive State-of-the-Art Review on the Recent Developments in Greenhouse Drying", Energies, vol. 15, no. 24, pp. 9493, 2022. https://doi.org/10.3390/en15249493
[48] Z. Chu, Y. Zhao, & Z. Guan, "Simulation and Optimization of Infrared Heating Temperature Field for Heat Shrink Tube Dry Expansion Process", Journal of Physics: Conference Series, vol. 2954, no. 1, pp. 012073, 2025. https://doi.org/10.1088/1742-6596/2954/1/012073
[49] T. Gao, X. Han, H. Zhang, Y. Geng, X. Lian, & Z. Fan, "Application of Graded Phase Change Materials for Solar Energy Inter-Seasonal Storage Heating and Thermal Storage Characteristics", Applied Mathematics and Nonlinear Sciences, vol. 9, no. 1, 2023. https://doi.org/10.2478/amns.2023.2.00642
[50] M. Kim, A. Han, J. Lee, S. Cho, I. Moon, & J. Na, "Comparison of Derivative-Free Optimization: Energy Optimization of Steam Methane Reforming Process", International Journal of Energy Research, vol. 2023, pp. 1-20, 2023. https://doi.org/10.1155/2023/8868540
[51] H. Elqady, G. Sedahmed, & M. Elkady, "Parametric Study for Optimizing Double-Layer Microchannel Heat Sink for Solar Panel Thermal Management", Scientific Reports, vol. 12, no. 1, 2022. https://doi.org/10.1038/s41598-022-23061-8
[52] N. Laksmi, M. Mubarok, F. Amaliah, A. Aziz, D. Rahmatullah, D. Herjuno et al., "Design of Automatic Battery Charger Using Forward DC-DC Converter for Solar Home Energy", Vokasi Unesa Bulletin of Engineering, Technology and Applied Science, vol. 2, no. 1, pp. 57-66, 2025. https://doi.org/10.26740/vubeta.v2i1.35817
[53] A. Olabi, K. Obaideen, M. Abdelkareem, M. AlMallahi, N. Shehata, A. Alami et al., "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array", Sustainability, vol. 15, no. 5, pp. 4641, 2023. https://doi.org/10.3390/su15054641
[54] Y. Wang, R. Wang, K. Tanaka, P. Ciais, J. Peñuelas, Y. Balkanski et al., "Accelerating the Energy Transition Towards Photovoltaic and Wind in China", Nature, vol. 619, no. 7971, pp. 761-767, 2023. https://doi.org/10.1038/s41586-023-06180-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 setiyono setiyono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract views: 0
,
PDF Downloads: 0





