Design of low-cost and simple reconstruction method for Three Dimensional Electrical Impedance Tomography (3D-EIT) Imaging

Authors

  • Endarko Endarko Department of Physics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) http://orcid.org/0000-0001-8238-1983
  • Ari Bangkit Sanjaya Umbu Department of Physics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS)

DOI:

https://doi.org/10.26740/jpfa.v10n2.p125-136

Keywords:

phantom, imaging, impedance, tomography, 3D

Abstract

Electrical impedance tomography is a non-invasive imaging modality that uses the electrical conductivity distribution to reconstruct images based on potential measurements from the object's surface. The proposed study was to design and fabricate a low-cost and simple reconstruction method for 3D electrical impedance tomography imaging. In this study, we have been successfully developed 3 Dimensional Electrical Impedance Tomography (3D-EIT) system using 16 copper electrodes (Cu) to detect and reconstruct the presence of objects in the Phantom. 3D-EIT was developed using Phantom as a test object with PVC pipe material, with an inner diameter of 7.2 cm and a height of 5.4 cm. Electrodes were arranged in two rings, with each ring having eight electrodes arranged in a planar line. Furthermore, the Gauss-Newton algorithm and Laplace prior regularization were used to image reconstruction of objects inside the Phantom using voltage measurement produced from sequential pairs of neighboring electrodes. The voltage is obtained from the injection of a constant current of 1 mA at 20 kHz into the system's electrode pairs. The objects used in this research are PVC pipe, solid aluminum, PVC pipes filled with wax glue, and copper trusses. The results obtained show that the reconstruction results can provide information about the position, the electrical properties, and the shape of real objects. Finally, the system can detect the location, height, and electrical properties of objects for all variations of angle and height variations.

References

Farha M and Endarko. Combined Algorithm of Total Variation and Gauss-Newton for Image Reconstruction in Two-Dimensional Electrical Impedance Tomography (EIT). Proceedings 2017 International Seminar on Sensor, Instrumentation, Measurement and Metrology: Innovation for the Advancement and Competitiveness of the Nation, ISSIMM 2017. 2017; 2017: 3741. DOI:10.1109/ISSIMM.2017.8124257.

Aris W and Endarko. Design of Low-Cost and High-Speed Portable Two-Dimensional Electrical Impedance Tomography (EIT). International Journal of Engineering & Technology. 2019; 7(4): 64586463. DOI:10.14419/ijet.v7i4.23298.

Umbu ABS and Endarko. The Design of Voltage Controlled Current Source (VCCS) for Single Frequency Electrical Impedance Tomography (EIT). Proceedings - 2017 International Seminar on Sensor, Instrumentation, Measurement and Metrology: Innovation for the Advancement and Competitiveness of the Nation, ISSIMM 2017. 2017; 2017: 3036. DOI:10.1109/ISSIMM.2017.8124256.

Puspitasari AJ and Endarko. Study of Precision Constant Current Sources with Resistor Load and a Cole-Cole Load for Multi-Frequency in Electrical Impedance Tomography. Proceeding - 2016 International Seminar on Sensors, Instrumentation, Measurement and Metrology, ISSIMM 2016. 2017; : 1217. DOI:10.1109/ISSIMM.2016.7803713.

Gong B, Krueger-Ziolek S and Moeller K. An Efficient Classification-Reconstruction Method for 3D EIT Imaging. IFAC-PapersOnLine. 2018; 51(27): 3640. DOI:10.1016/j.ifacol.2018.11.604.

Hikmah I, Rubiyanto A and Endarko. Two-Dimensional Electrical Impedance Tomography (EIT) for Characterization of Body Tissue Using a Gauss-Newton Algorithm. Journal of Physics: Conference Series. 2019; 1248(1). DOI:10.1088/1742-6596/1248/1/012008.

Goren N, et al. Data Descriptor: Multi-Frequency Electrical Impedance Tomography and Neuroimaging Data in Stroke Patients. Scientific Data. 2018; 5: 110. DOI:10.1038/sdata.2018.112.

Putensen C, Hentze B, Muenster S and Muders T. Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. Journal of Clinical Medicine. 2019; 8(8): 1176. DOI:10.3390/jcm8081176.
Singh G, et al. Development of a Microcontroller Based Electrical Impedance Tomography System, in: 2015 IEEE Long Isl. Syst. Appl. Technol. Conf. LISAT 2015, Institute of Electrical and Electronics Engineers Inc.; 2015. DOI:10.1109/LISAT.2015.7160174.

Teschener E, Imhoff M and Leonhardt S. Electrical Impedance Tomography: The Realisation of Regional Ventilation Monitoring. 2nd Edition. 2015; 1(January). DOI:10.1017/CBO9781107415324.004.

Trigo FC, Gonzalez-Lima R and Amato MBP. Electrical Impedance Tomography Using the Extended Kalman Filter. IEEE Transactions on Biomedical Engineering. 2004; 51(1): 7281. DOI:10.1109/TBME.2003.820389.

Adler A, Dai T and Lionheart WRB. Temporal Image Reconstruction in Electrical Impedance Tomography. Physiological Measurement. 2007; 28(7): S1. Available from: http://stacks.iop.org/0967-3334/28/i=7/a=S01.

Sarode V and Cheeran AN. Electrical Impedance Tomography Using EIDORS in a Closed Phantom. 2012; 48(19): 4852.

Zhou Y and Li X. A Real-Time EIT Imaging System Based on the Split Augmented Lagrangian Shrinkage Algorithm. Measurement: Journal of the International Measurement Confederation. 2017; 110: 2742. DOI:10.1016/j.measurement.2017.06.018.

Zhou Z, et al. The Design and Implementation of a Portable EIT Telemedicine System. Proceedings - 2012 International Conference on Intelligent Systems Design and Engineering Applications, ISDEA 2012. 2012; : 571575. DOI:10.1109/ISdea.2012.741.

Chen B and Soleimani M. Depth Analysis of Planar Array for 3D Electrical Impedance Tomography. IEEE Sensors Journal. 2019; 19(22): 1071010718. DOI:10.1109/JSEN.2019.2929625.

Besler E, Curtis Wang Y, C. Chan T and V. Sahakian A. Real-Time Monitoring Radiofrequency Ablation Using Tree-Based Ensemble Learning Models. International Journal of Hyperthermia. 2019; 36(1): 428437. DOI:10.1080/02656736.2019.1587008.

Hrabuska R, Prauzek M, Venclikova M and Konecny J. Image Reconstruction for Electrical Impedance Tomography: Experimental Comparison of Radial Basis Neural Network and Gauss Newton Method. IFAC-PapersOnLine. 2018; 51(6): 438443. DOI:10.1016/j.ifacol.2018.07.114.

Khalighi M, Vahdat, BV, Mortazavi M, Hy W, and Soleimani M. Practical Design of Low-Cost Instrumentation for Industrial Electrical Impedance Tomography (EIT). 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings. Graz, Austria. 2012; 1259-1263. DOI: http://dx.doi.org/10.1109/I2MTC.2012.6229173.

Luo Y, et al. Non-Invasive Electrical Impedance Tomography for Multi-Scale Detection of Liver Fat Content. Theranostics. 2018; 8(6): 16361647. DOI:10.7150/thno.22233.

Chitturi V and Farrukh N. Development Of An Agilent Voltage Source For Electrical Impedance Tomography Applications. 2016; 11(5). Available from: www.arpnjournals.com [accessed 1 April 2020].

Graham BM. Enhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung Imaging, University of Ottawa. Available from: https://ruor.uottawa.ca/bitstream/10393/29436/1/NR32402.PDF [accessed 1 April 2020].

Arduino - ArduinoDue; . Available from: https://www.arduino.cc/en/Guide/ArduinoDue [accessed 17 July 2017].

Adler A and Lionheart WRB. Uses and Abuses of EIDORS: An Extensible Software Base for EIT. Physiological measurement. 2006; 27(5): S25-42. DOI:10.1088/0967-3334/27/5/S03.

EIDORS; . Available from: http://eidors3d.sourceforge.net/ [accessed 17 July 2017].

Yin X, Wu H, Jia J and Yang Y. A Micro EIT Sensor for Real-Time and Non-Destructive 3-d Cultivated Cell Imaging. IEEE Sensors Journal. 2018; 18(13): 54025412. DOI:10.1109/JSEN.2018.2834509.

Khan TA and Ling SH. Review on Electrical Impedance Tomography: Artificial Intelligence Methods and Its Applications. Algorithms. 2019; 12(5): 88. DOI:10.3390/a12050088.

Graham BM and Adler A. Electrode Placement Configurations for 3D EIT. Physiological measurement. 2007; 28(7): S29-44. DOI:10.1088/0967-3334/28/7/S03.

Wagenaar J and Adler A. Electrical Impedance Tomography in 3D Using Two Electrode Planes: Characterization and Evaluation. n.d.

Maimaitijiang Y, Gürsoy D and Adler A. Electrode Positions and Current Patterns for 3D EIT. 2011; . Available from: https://www.researchgate.net/publication/267220949_Electrode_positions_and_current_patterns_for_3D_EIT [accessed 1 April 2020].

Adler A, Gaggero PO and Maimaitijiang Y. Adjacent Stimulation and Measurement Patterns Considered Harmful, in: Physiol. Meas., Physiol Meas; 2011: pp. 731744. DOI:10.1088/0967-3334/32/7/S01.

Cherepenin V, et al. A 3D Electrical Impedance Tomography (EIT) System for Breast Cancer Detection, in: Physiol. Meas., IOP Publishing; 2001: pp. 918. DOI:10.1088/0967-3334/22/1/302.

Downloads

Published

2020-12-31

How to Cite

Endarko, E. and Sanjaya Umbu, A. B. (2020) “Design of low-cost and simple reconstruction method for Three Dimensional Electrical Impedance Tomography (3D-EIT) Imaging”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 10(2), pp. 125–136. doi: 10.26740/jpfa.v10n2.p125-136.

Issue

Section

Articles
Abstract views: 655 , PDF Downloads: 446

Most read articles by the same author(s)