Characterization of Temperature Response of Asymmetric Tapered-Plastic Optical Fiber-Mach Zehnder Interferometer

Authors

  • Ian Yulianti Universitas Negeri Semarang
  • Ngurah Made Darma Putra Universitas Negeri Semarang
  • Fianti Fianti Universitas Negeri Semarang
  • Abu Sahmah Mohd Supaat Universiti Teknologi Malaysia
  • Helvi Rumiana Universitas Negeri Semarang
  • Siti Maimanah Universitas Negeri Semarang
  • Kukuh Eka Kurniansyah Universitas Negeri Semarang

DOI:

https://doi.org/10.26740/jpfa.v10n1.p34-43

Keywords:

Mach-Zehnder interferometer, SI-POF, Temperature measurement

Abstract

Temperature measurement is important in various applications; therefore, various temperature sensors have been developed. Due to its advantages, many optical fiber-based temperature sensors have been proposed. The wavelength modulation-based optical sensor is interesting due to high accuracy. However, the complex fabrication process and high cost limit the advantages of the sensors. Therefore, we proposed a simple and low-cost Mach Zehnder interferometer (MZI) sensor using step-index plastic optical fiber (SI-POF). Performance characterization of the sensor to temperature variation is presented. The sensor consists of two tapers at several distances, forming an interferometer. The first taper was designed to be steep to allow excitation of cladding modes, while the second taper was gradual to suppress power loss. Characterizations were done in terms of sensitivity, hysteresis, and repeatability by analyzing the output spectrums recorded by the spectrometer at various environment temperatures, 35oC to 85oC, with an increment of 10oC. The results showed that the sensor has a sensitivity of 0.0431 nm/oC and a correlation coefficient of 0.9965. Hysteresis of 6.9×10-3 was observed. In terms of repeatability, the sensor shows a maximum deviation, ±3oC, which was mainly resulted from the fluctuation of the oven temperature. Despite its high deviation, the sensor has advantages of simple fabrication, low cost, robust, and low power loss, which make it a good candidate for temperature sensors.

Author Biographies

Ian Yulianti, Universitas Negeri Semarang

Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang

Ngurah Made Darma Putra, Universitas Negeri Semarang

Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang

Fianti Fianti, Universitas Negeri Semarang

Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang

Abu Sahmah Mohd Supaat, Universiti Teknologi Malaysia

School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia

Helvi Rumiana, Universitas Negeri Semarang

Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang

Siti Maimanah, Universitas Negeri Semarang


Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang

Kukuh Eka Kurniansyah, Universitas Negeri Semarang

Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang

References

Hsiao TC, Hsieh TS, Chen YC, Huang SC, and Chiang CC. Metal-Coated Fiber Bragg Grating for Dynamic Temperature Sensor. Optik. 2016; 127(22): 1074010745. DOI: https://doi.org/10.1016/j.ijleo.2016.08.110.

Ma L, Kang Z, Qi Y and Jian S. Fiber-Optic Temperature Sensor Based on a Thinner No-Core Fiber. Optik. 2015; 126(910):10441046.DOI: https://doi.org/10.1016/j.ijleo.2015.02.084.

Villalba A and Martín JC. Interferometric Temperature Sensor Based on a Water-Filled Suspended-Core Fiber. Optical Fiber Technology. 2017; 33: 3638. DOI: https://doi.org/10.1016/j.yofte.2016.11.006.

Abbasi M, Soroosh M and Namjoo E. Polarization-Insensitive Temperature Sensor Based on Liquid Filled Photonic Crystal Fiber. Optik. 2018; 168: 342347. DOI: https://doi.org/10.1016/J.IJLEO.2018.04.116.

Hsu JM, et al. Temperature Fiber Sensors Based on Mach-Zehnder Interferometer With Sturdy Structure. IEEE Sensors Journal. 2015; 15(12): 69957000. DOI: https://doi.org/10.1109/JSEN.2015.2469670.

Ma Q, Ni K and Huang R. A Carboxy-Methyl Cellulose Coated Humidity Sensor Based on Mach-Zehnder Interferometer with Waist-Enlarged Bi-Tapers. Optical Fiber Technology. 2017; 33: 6063. DOI: https://doi.org/10.1016/j.yofte.2016.11.002.

Ni K, Chan CC, Chen L, Dong X, Huang R, and Ma Q. A Chitosan-Coated Humidity Sensor Based on Mach-Zehnder Interferometer with Waist-Enlarged Fusion Bitapers. Optical Fiber Technology. 2017; 33: 5659. DOI: https://doi.org/10.1016/j.yofte.2016.11.005.

Huerta-Mascotte E, Sierra-Hernandez JM, Mata-Chavez RI, Jauregui-Vazquez D, Castillo-Guzman A, Estudillo-Ayala JM, Guzman-Chavez AD, and Rojas-Laguna R. A Core-Offset Mach Zehnder Interferometer Based on a Non-Zero Dispersion-Shifted Fiber and Its Torsion Sensing Application. Sensors. 2016; 16(6). 856. DOI: https://doi.org/10.3390/s16060856.

Wang Q, Kong L, Dang Y, Xia F, Zhang Y, Zhao Y, Hu H, and Li J. High Sensitivity Refractive Index Sensor Based on Splicing Points Tapered SMF - PCF- SMF Structure Mach-Zehnder Mode Interferometer. Sensors and Actuators, B: Chemical. 2016; 225: 213220. DOI: https://doi.org/10.1016/j.snb.2015.11.047.

Melo L, Burton G, Kubik P and Wild P. Refractive Index Sensor Based on Inline Mach-Zehnder Interferometer Coated with Hafnium Oxide by Atomic Layer Deposition. Sensors and Actuators, B: Chemical. 2016; 236: 537545. DOI: https://doi.org/10.1016/j.snb.2016.06.030.

Avila-Garcia MS, Bianchetti M, Corre RL, Guevel A, Mata-Chavez RI, Sierra-Hernandez JM, Jauregui-Vazquez D, Reyes-Ayona JR, Estudillo-Ayala JM, and Rojas-Laguna R. High Sensitivity Strain Sensors Based on Single-Mode-Fiber Core-Offset Mach-Zehnder Interferometers. Optics and Lasers in Engineering. 2018; 107: 202206. DOI: https://doi.org/10.1016/J.OPTLASENG.2018.02.008.

Deng M, Liu L, Zhao Y, Yin G, and Zhu T. Highly Sensitive Temperature Sensor Based on an Ultra-Compact MachZehnder Interferometer with Side-Opened Channels. Optics Letters. 2017; 42(18): 3549-3552. DOI: https://doi.org/10.1364/OL.42.003549.

Zhao L, Liu B, Wu Y, Mao Y, Sun T, Zhao D, Liu Y, and Liu S. Photonic Crystal All-Fiber Mach-Zehnder Interferometer Sensor Based on Phase Demodulation. Optical Fiber Technology. 2019; 53: 102059. DOI: https://doi.org/10.1016/j.yofte.2019.102059.

Gong J, Shen C, Xiao Y, Liu S, Zhang C, Ding Z, Deng H, Fang J, Lang T, Zhao C, and Chen Y. High Sensitivity Fiber Temperature Sensor Based PDMS Film on Mach-Zehnder Interferometer. Optical Fiber Technology. 2019; 53: 102029. DOI: https://doi.org/10.1016/j.yofte.2019.102029.

Tong R, Zhao Y, Hu H and Qu J. Large Measurement Range and High Sensitivity Temperature Sensor with FBG Cascaded Mach-Zehnder Interferometer. Optics & Laser Technology. 2020; 125: 106034. DOI: https://doi.org/10.1016/j.optlastec.2019.106034.

Leal-Junior A, Frizera-Netoc A, Marques C and Pontes MJ. A Polymer Optical Fiber Temperature Sensor Based on Material Features. Sensors. 2018; 18(1): 301. DOI: https://doi.org/10.3390/s18010301.

Jing N, Teng C, Zheng J, Wang G, Chen Y, Wang Z. A Liquid Level Sensor Based on a Race-Track Helical Plastic Optical Fiber. IEEE Photonics Technology Letters. 2017; 29(1): 158160. DOI: https://doi.org/10.1109/LPT.2016.2630730.

Rithesh Raj D, Prasanth S, Vineeshkumar T V and Sudarsanakumar C. Ammonia Sensing Properties of Tapered Plastic Optical Fiber Coated with Silver Nanoparticles/PVP/PVA Hybrid. Optics Communications. 2015; 340: 8692. DOI: https://doi.org/10.1016/j.optcom.2014.11.092.

Cennamo N, Varriale A, Pennacchio A, Staiano M, Massarotti D, ZeniL, and D'Auria S. An Innovative Plastic Optical Fiber-Based Biosensor for New Bio/Applications. The Case of Celiac Disease. Sensors and Actuators B: Chemical. 2013; 176: 10081014. DOI: https://doi.org/10.1016/j.snb.2012.10.055.

Elias SN, Arsad N and Abubakar S. Nitrite Detection Using Plastic Optical Fiber (POF); an Early Stage Investigation towards the Development of Oral Cancer Sensor Using POF. Optik. 2015; 126(21): 29082911. DOI: https://doi.org/10.1016/j.ijleo.2015.07.038

Gowri A and Sai VVR. Development of LSPR Based U-Bent Plastic Optical Fiber Sensors. Sensors and Actuators B: Chemical. 2016; 230: 536543. DOI: https://doi.org/10.1016/J.SNB.2016.02.074.

Jasim AA, Hayashi N, Harun SW, Ahmad H, Penny R, Mizuno Y, and Nakamura K. Refractive Index and Strain Sensing Using Inline Mach-Zehnder Interferometer Comprising Perfluorinated Graded-Index Plastic Optical Fiber. Sensors and Actuators A: Physical. 2014; 219: 9499. DOI: https://doi.org/10.1016/j.sna.2014.07.018.

Luo Y, Yan B, Zhang Q, Peng GD, Wen J, Z, and Zhang J. Fabrication of Polymer Optical Fibre (POF) Gratings. Sensors. 2017; 17(3): 511. DOI: https://doi.org/10.3390/s17030511.

Li C, Ning T, Zhang C, Wen X, Li J, and Zhang C. Liquid Level and Temperature Sensor Based on an Asymmetrical Fiber MachZehnder Interferometer Combined with a Fiber Bragg Grating. Optics Communications. 2016; 372: 196200. DOI: https://doi.org/10.1016/j.optcom.2016.04.025.

Jing N, Teng C, Zheng J, Wang G, Zhang M, and Wang Z. Optical Fiber Technology Temperature Dependence of Light Power Propagation in Bending Plastic Optical Fiber. Optical Fiber Technology. 2016; 31: 2022. DOI: https://doi.org/10.1016/j.yofte.2016.05.006.

Moraleda AT, García CV, Zaballa JZ and Arrue J. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend. Sensors. 2013; 13(10): 1307613089. DOI: https://doi.org/10.3390/s131013076.

Tapetado A, Pinzón PJ, Zubia J and Vázquez C. Polymer Optical Fiber Temperature Sensor With Dual-Wavelength Compensation of Power Fluctuations. Journal of Lightwave Technology. 2015; 33(13): 27162723. DOI: https://doi.org/10.1109/JLT.2015.2408368.

Li J, Gai L, Li H and Hu H. A High Sensitivity Temperature Sensor Based on Packaged Microfibre Knot Resonator. Sensors and Actuators A: Physical. 2017; 263: 369372. DOI: https://doi.org/10.1016/j.sna.2017.06.031.

Mohanraj J, Velmurugan V, Sathiyan S and Sivabalan S. All Fiber-Optic Ultra-Sensitive Temperature Sensor Using Few-Layer MoS2 Coated D-Shaped Fiber. Optics Communications. 2018; 406: 139144. DOI: https://doi.org/10.1016/j.optcom.2017.06.011.

Wang Z. Intrinsic Fabry-Perot Interferometric Fiber Sensor Based on Ultra-Short Bragg Gratings for Quasi-Distributed Strain and Temperature Measurements. Dissertation. Virginia: Virginia Polytechnic Institute and State University, 2006. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.382&rep=rep1&type=pdf

Downloads

Published

2020-07-14

How to Cite

Yulianti, I., Putra, N. M. D., Fianti, F., Supaat, A. S. M., Rumiana, H., Maimanah, S. and Kurniansyah, K. E. (2020) “Characterization of Temperature Response of Asymmetric Tapered-Plastic Optical Fiber-Mach Zehnder Interferometer”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 10(1), pp. 34–43. doi: 10.26740/jpfa.v10n1.p34-43.

Issue

Section

Articles
Abstract views: 506 , PDF Downloads: 379