Thermal Durability Characterization of a Simple Polymethyl-methacrylate (PMMA) Based-Optical Waveguide

Authors

  • Ian Yulianti Universitas Negeri Semarang
  • Shiva Maulana Khoiru Insan Universitas Negeri Semarang
  • Ngurah Made Darma Putra Universitas Negeri Semarang
  • Aji Purwinarko Universitas Negeri Semarang
  • Nuni Widiarti Universitas Negeri Semarang
  • Nor Hafizah Ngajikin Universiti Tun Hussein Onn

DOI:

https://doi.org/10.26740/jpfa.v14n2.p113-124

Keywords:

Waveguide, Polymethyl-methacrylate (PMMA), Unsaturated Polyester Resin (UPR), Thermal Durability

Abstract

Polymethyl-methacrylate (PMMA)-based optical waveguide is a good candidate for a simple and low-cost waveguide.  However, the thermal properties have not been investigated. In this work, thermal durability characterization of PMMA-based waveguide was carried out. Waveguide fabrication process was done in three stages, which are patterning the PMMA cladding, core material synthetization and core material application to the cladding.  Core pattern with cross section area of 1×1 mm2 was engraved on the 4 cm long PMMA sheet. Unsaturated polyester resin (UPR) was used as a core material. Characterizations were conducted for temperature dependent loss (TDL), temperature working range, and long exposure durability.  For TDL characterization, the temperature varied from 30°C to 75°C.  Meanwhile, for temperature working range, the waveguide was exposed to cycled heating.   The thermal durability characterization was done by immersing the waveguide in distilled water at temperature of 40 °C for 288 hours. The results showed that a little change of output intensity occurred due to temperature variation with TDL of 0.0235 dB/°C.  The maximum limit of the temperature is 70°C.  For long exposure to temperature of 40oC, the results showed that the waveguide has a good performance.

References

Yulianti I, Ngurah Made DP, Lestiyanti Y, and Kurdi O. Optimization of Ridge Waveguide Structure for Temperature Sensor Application Using Finite Difference Method. Proceeding of MATEC Web of Conferences. 2018; 159: 02020. DOI: https://doi.org/10.1051/matecconf/201815902020.

He H-L, Li J, Zhang S-Y, Liu H, Ma J, Fan Y-X, et al. Multiplexing of Terahertz Signals Based on Gold-Coated Polymer Parallel-Plate Waveguides. Optik (Stuttg). 2023; 287: 171113. DOI: https://doi.org/10.1016/j.ijleo.2023.171113.

Liu C-Y. Fabrication and Optical Characteristics of Silicon-Based Two-Dimensional Wavelength Division Multiplexing Splitter with Photonic Crystal Directional Waveguide Couplers. Physics Letter A. 2011; 375(28): 2754–2758. DOI: https://doi.org/10.1016/j.physleta.2011.06.017.

Tian Y, Kang Z, He J, Zheng Z, Qiu J, Wu J, et al. Cascaded All-Optical Quantization Employing Step-Size MMI and Shape-Optimized Power Splitter. Optics and Laser Technology. 2023; 158: 108820. DOI: https://doi.org/10.1016/j.optlastec.2022.108820.

Chen Y, Chen Y, Lu M, Zhao Y, Hu G, Yun B, et al. Optimized Inverse Design of An Ultra-Compact Silicon-Based 2 × 2 3 dB Optical Power Splitter. Optics Communications. 2023; 530: 129141. DOI: https://doi.org/10.1016/j.optcom.2022.129141.

Serecunova S, Seyringer D, Uherek F, and Seyringer H. Waveguide Shape and Waveguide Core Size Optimization of Y-Branch Optical Splitters Up To 128 Splitting Ratio. Optics Communications. 2021; 501: 127362. DOI: https://doi.org/10.1016/j.optcom.2021.127362.

Wang Y, Wang KF, and Wang BL. Bending Mechanism of Optically Actuated All-Optical Mechanical Switches Composed of Bilayer Waveguides. International Journal of Mechanical Sciences. 2022; 222: 107234. DOI: https://doi.org/10.1016/j.ijmecsci.2022.107234.

ShangGuan L, Zhang D, Zhang T, Cheng R, Wang J, Wang C, et al. Functionalized Polymer Waveguide Optical Switching Devices Integrated with Visible Optical Amplifiers Based On An Organic Gain Material. Dye Pigment. 2020; 176: 108210. DOI: https://doi.org/10.1016/j.dyepig.2020.108210.

Jiang M, Zhang D, Lian T, Wang L, Niu D, Chen C, et al. On-Chip Integrated Optical Switch Based on Polymer Waveguides. Optical Materials (Amst). 2019; 97: 109386. DOI: https://doi.org/10.1016/j.optmat.2019.109386.

Mamtmin G, Kari N, Abdurahman R, Nizamidin P, and Yimit A. 5, 10, 15, 20-Tetrakis-(4-Methoxyphenyl) Porphyrin Film/K+ Ion-Exchanged Optical Waveguide Gas Sensor. Optics and Laser Technology. 2020; 128: 106260. DOI: https://doi.org/10.1016/j.optlastec.2020.106260.

Mamtmin G, Nizamidin P, Abula R, and Yimit A. Composite Optical Waveguide Sensor Based on Porphyrin@ZnO Film for Sulfide-Gas Detection. Chinese Journal of Analytical Chemistry. 2023; 51(7): 100260. DOI: https://doi.org/10.1016/j.cjac.2023.100260.

Niu D, Zhang D, Wang L, Lian T, Jiang M, Sun X, et al. High-Resolution and Fast-Response Optical Waveguide Temperature Sensor Using Asymmetric Mach-Zehnder Interferometer Structure. Sensors Actuators A: Physical. 2019; 299: 111615. DOI: https://doi.org/10.1016/j.sna.2019.111615.

Malmir K, Habibiyan H, and Ghafoorifard H. Ultrasensitive Optical Biosensors Based on Microresonators with Bent Waveguides. Optik (Stuttg). 2020; 216: 164906. DOI: https://doi.org/10.1016/j.ijleo.2020.164906.

Zhang H, Fan G, Cai X, Wei J, Jing G, Li S, et al. Quasi-Linear Response of An Integrated Optical Waveguide Sensor by A Double Output Readout Method. Optik (Stuttg). 2021; 245: 167734. DOI: https://doi.org/10.1016/j.ijleo.2021.167734.

Ding Z, Wang H, Li T, Ouyang X, Shi Y, and Zhang AP. Fabrication of Polymer Optical Waveguides by Digital Ultraviolet Lithography. Journal of Lightwave Technology. 2022; 40(1): 163–169. DOI: https://doi.org/10.1109/JLT.2021.3120712.

Prajzler V, Chlupaty V, Kulha P, Neruda M, Kopp S, and Mühlberger M. Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique. Nanomaterials. 2021; 11(3): 724. DOI: https://doi.org/10.3390/nano11030724.

Ishutkin SV, Arykov VS, Yunusov IV, Stepanenko M V, Troyan PE, and Zhidik YS. Development of Technology Formation of the Optical Waveguide Structures Based on InP by Plasma Etching. Proceeding of 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). 2019: 53–58. DOI: https://doi.org/10.1109/EDM.2019.8823278.

Lv J, Hong B, Tan Y, Chen F, Rodríguez Vázquez de Aldana J, and Wang GP. Mid-Infrared Waveguiding in Three-Dimensional Microstructured Optical Waveguides Fabricated by Femtosecond-Laser Writing and Phosphoric Acid Etching. Photonics Research. 2020; 8(3): 257–262. DOI: https://doi.org/10.1364/PRJ.380215.

Lizarraga-Medina EG, Castillo GR, Jurado JA, Caballero-Espitia DL, Camacho-Lopez S, Contreras O, et al. Optical Waveguides Fabricated in Atomic Layer Deposited Al2O3 by Ultrafast Laser Ablation. Results in Optics. 2021; 2: 100060. DOI: https://doi.org/10.1016/j.rio.2021.100060.

Woods R, Feldbacher S, Langer G, Satzinger V, Schmidt V, and Kern W. Epoxy Silicone Based Matrix Materials for Two-Photon Patterning of Optical Waveguides. Polymer (Guildf). 2011; 52(14): 3031–3037. DOI: https://doi.org/10.1016/j.polymer.2011.04.052.

Hamid H, Neeli M, Fickenscher T, O’Keefe SG, and Thiel DV. Simple Low-Cost Fabrication Method of A Buried Plastic Optical Waveguide for Circuits in Plastic Interconnects. Microwave and Optical Technology Letters. 2013; 55(8): 1947–1950. DOI: https://doi.org/10.1002/mop.27683.

Zheng L, Keppler N, Zhang H, Behrens P, and Roth B. Planar Polymer Optical Waveguide with Metal-Organic Framework Coating for Carbon Dioxide Sensing. Advanced Material Technology. 2022; 7(12): 2200395. DOI: https://doi.org/10.1002/admt.202200395.

Ryu JH, Lee TH, Cho I-K, Kim C-S, and Jeong MY. Simple Fabrication of A Double-Layer Multi-Channel Optical Waveguide Using Passive Alignment. Optics Express. 2011; 19(2): 1183–1190. DOI: https://doi.org/10.1364/OE.19.001183.

Yulianti I, Putra NMD, Astuti B, Kurniansyah KE, and Latif ZAF. Fabrication and Characterization of Polyester/Polymethylmethacrylate Buried Waveguide for Operation in Visible Light Range. AIP Conference Proceedings. 2019; 2169: 060006. DOI: https://doi.org/10.1063/1.5132684.

Yulianti I, Putra NMD, Fianti, Dewi AL, and Paradita D. Performances Characterization of Unsaturated Polyester Resin/Polymethylmethacrylate Waveguide for Refractive Index Measurement. Optik (Stuttg). 2021; 242: 167305. DOI: https://doi.org/10.1016/j.ijleo.2021.167305.

Günther A, Baran M, Roth B, and Kowalsky W. Simulation and Experimental Verification of the Thermal Behaviour of Self-Written Waveguides. Applied Sciences. 2022; 11(17): 7881. DOI: https://doi.org/10.3390/app11177881.

Jing N, Teng C, Zheng J, Wang G, Zhang M, and Wang Z. Temperature Dependence of Light Power Propagation in Bending Plastic Optical Fiber. Optical Fiber Technology. 2016; 31: 20–22. DOI: https://doi.org/10.1016/j.yofte.2016.05.006.

Günther A, Baran M, Garg R, Roth B, Kowalsky W. Analysis of the thermal behavior of self-written waveguides. Optics and Lasers Engineering. 2022; 151: 106922. DOI: https://doi.org/10.1016/j.optlaseng.2021.106922.

Chencheni A, Belkhiri S, Tarchoun AF, Abdelaziz A, Bessa W, Boucheffa Y, and Trache D. Unravelling The Thermal Behavior and Kinetics of Unsaturated Polyester Resin Supplemented With Organo-Nanoclay. RSC Advances. 2024; 14: 517-528. DOI: https://doi.org/10.1039/d3ra06076d.

Salemane MG, Baruwa AD, and Makhatha ME. Investigating the Chemical Stability and Thermal Functionality of DMPT Promoted TiO2 Nanoparticles On Unsaturated Polyester Resin. Results in Engineering. 2024; 22: 102116. DOI: https://doi.org/10.1016/j.rineng.2024.102116.

Dai K, Song L, Jiang S, Yu B, Yang W, Yuen RKK, and Hu Y. Unsaturated Polyester Resins Modified With Phosphorus-Containing Groups: Effects on Thermal Properties and Flammability. Polymer Degradation and Stability. 2013; 98(10): 2033-2040. DOI: https://doi.org/10.1016/j.polymdegradstab.2013.07.008.

Dayan MAR, Habib MM, Uddin MM, Khatun M, Hossain MS, and Rashid MA. Characterization of Aloe Vera Gel Incorporated Unsaturated Polyester Resin Jute-Cotton Fabric Composites for Enhanced Biodegradability, Flexibility, and Insulation Properties. Heliyon. 2024; 10(15): e35261. DOI: https://doi.org/10.1016/j.heliyon.2024.e35261.

Ren K and Tsai Y. Thermal Hazard Characteristics of Unsaturated Polyester Resin Mixed with Hardeners. Polymers. 2021; 13(4): 522. DOI: https://doi.org/10.3390/polym13040522

Dvořáčková Š and Kroisová D. Thermal Expansion of Composite System Epoxy Resin/Recycled Carbon Fibers. Materials Science Forum. 2020; 994: 162–169. DOI: https://doi.org/10.4028/www.scientific.net/MSF.994.162.

Salasinska K, Celiński M, Barczewski M, Leszczyński MK, Borucka M, and Kozikowski P. Fire Behavior of Flame Retarded Unsaturated Polyester Resin With High Nitrogen Content Additives. Polymer Testing. 2020; 84: 106379. DOI: https://doi.org/10.1016/j.polymertesting.2020.106379.

Halim ZAA, Yajid MAM, Nurhadi FA, Ahmad N, and Hamdan H. Effect of Silica Aerogel – Aluminium Trihydroxide Hybrid Filler On The Physio-Mechanical and Thermal Decomposition Behaviour of Unsaturated Polyester Resin Composite. Polymer Degradation and Stability. 2020; 182: 109377. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109377.

Li Y, Miao Y, Wang F, Wang J, Ma Z, Wang L, Di X, and Zhang K. Serial-Tilted-Tapered Fiber with High Sensitivity for Low Refractive Index. Optics Express. 2018; 26(26): 34776-34788. DOI: https://doi.org/10.1364/OE.26.034776.

Downloads

Additional Files

Published

2024-12-13

How to Cite

Yulianti, I. (2024) “Thermal Durability Characterization of a Simple Polymethyl-methacrylate (PMMA) Based-Optical Waveguide”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 14(2), pp. 113–124. doi: 10.26740/jpfa.v14n2.p113-124.

Issue

Section

Articles
Abstract views: 26 , PDF Downloads: 0 , PDF Downloads: 0

Most read articles by the same author(s)