Analysis of Neutronic Safety Parameters of the Multi-Purpose ReactorGerrit Augustinus Siwabessy (RSG-GAS) Research Reactor at Serpong


  • Tukiran Surbakti Badan Tenaga Atom Nasional (BATAN)
  • Purwadi Purwadi Badan Tenaga Atom Nasional (BATAN)



research reactor, safety parameter, WIMSD-5B, BATAN-FUEL


The main safety parameters of Multipurpose ReactorGerrit Augustinus Siwabessy (RSG-GAS) have never been evaluated periodically and neutronically require to be evaluated in terms of stuck rod reactivity, shut-down margin and temperature reactivity coefficient are treated by experiment. Meanwhile, power peaking factors and maximum fuel burn up are treated by calculations. The diffusion method did the calculation using the computer code. Safety parameters are very important aspects for the operation and design improvement. The results of the experiment and calculation about the safety parameters of RGS-GAS core are utilized for safety evaluation as part of a research reactor operation Periodic Safety Review (PSR). It presents reactor calculations as a method for their determination assuming use of computer codes such as WIMSD-5B using ENDF.BVII.0 and BATAN-FUEL. According to the experimental data and calculation, neutronic safety parameters have met the safety analysis report such as reactivity coefficient is negative and met the shutdown margin at stuck rod condition nothing has violated the safety margin. The results can be used as the periodic safety review for renewal operation license from Nuclear Energy Regulatory Agency of Indonesia (BAPETEN) as the regulator body. These results also can be used as a reference for new research reactor MTR type advanced design in the future.

Author Biographies

Tukiran Surbakti, Badan Tenaga Atom Nasional (BATAN)

Pusat Teknologi dan Keslamatan Reaktor Nuklir (PTKRN)

Purwadi Purwadi, Badan Tenaga Atom Nasional (BATAN)

Pusat Reaktor Serbaguna (PRSG)


Setiyanto and Surbakti T. Analysis of Gamma Heating at TRIGA Mark Reactor Core Bandung Using Plate-type Fuel. Jurnal Tri Dasa Mega. 2016; 18(3): 127-134. DOI:

Rahgoshaya M and Kalkhoran ON. Calculation of Control Rod Worth and Temperature Reactivity Coefficient of Fuel and Coolant with Burn-up Changes for VVRS-2 MWth Nuclear Reactor. Journal of Nuclear Engineering and Design. 2013; 256: 322-331. DOI:

Surbakti T and Tagor MS. Neutronics Analysis on Mini Test Fuel in the RSG-GAS Core. Jurnal Tri Dasa Mega. 2016; 18(1): 29-40. DOI:

Surbakti T and Imron M. Fuel Burn-up Calculation for RSG-GAS Working Core. Jurnal Penelitian Fisika dan Aplikasinya (JPFA). 2017; 7(2): 89-101. DOI: 10.26740/jpfa.v7n2.p89-101.

Rokhmadi and Surbakti T. Effect of Fuel Density on Reactivity Coefficient Parameter of the RRI Core Design. Jurnal Tri Dasa Mega. 2013; 15(2): 77-89. Available from:

Suparlina L. RSG-GAS Core Conversion Management of High Loaded Silicide Fuels. Jurnal Tri Dasa Mega. 2013; 15(3): 137-149. Available from:

Surbakti T and Purwadi, Reactivity Characteristic of the RSG-GAS Working Core for 30 Years Operation. Jurnal Penelitian Fisika dan Aplikasinya (JPFA). 2017; 7(1): 13-26. DOI:

Surbakti T, Surian P, Tagor MS, Lily S, and Jati S. Neutronics Conceptual Design of the Innovative Research Reactor Core Using Uranium Molybdenum Fuel. Jurnal Tri Dasa Mega. 2012; 3(14): 178-191. Available from:

Surbakti T, Tagor MS, and Surian P. Analysis of Silicide Fuel Density Effect on the Kinetic Parameters of the RSG-GAS Reactor Core. Jurnal Penelitian Fisika dan Aplikasinya (JPFA). 2013; 3(1): 19-30. DOI:

Iman K and Tagor MS. Alternative Core Design for Innovative Research Reactor (RRI) from the Neutronic Aspect. Jurnal Tri Dasa Mega. 2014; 16(1): 1-10. Available from:

Batan. Safety Analysis Report of RSG-GAS rev 10.1. Batan; 2011.

Hong LP. Development of an In-core Fuel Management Code for Serching Equilibrium Core in 2-D Reactor Geometry (BATAN-EQUIL-2D). Atom Indonesia. 1997; 23(1): 1-19. Available from:

Pinem S, Sembiring TM, and Leim PH. Neutronic and Thermal-Hydraulic Safety Analysis for the Optimization the Uranium Target in the RSG-GAS Reactor. Atom Indonesia. 2016; 42(3): 123-128. DOI:

Hussien HM, Amin EH, and Sakr AM. Effect of Core Configuration on the Burn up Calculations of MTR Research Reactors. Annals of Nuclear Energy. 2014; 63: 285-294. DOI:

Surbakti T, Pinem S, and Suparlina L. Dynamic Analysis on the Safety Criteria of the Conceptual Core Design in MTR-type Research Reactor. Journal Atom Indonesia. 2018; 44(2): 89-98. DOI:

Liem PH, Surbakti T, and Donny S. Kinetics Parameters Evaluation on the First Core of the RSG GAS (MPR-30) Using Continuous Energy Monte Carlo Method. Progress in Nuclear Energy. 2018; 109: 196-203. DOI:

Pinem S, Liem PH, Tagor MS and Surbakti T. Fuel Element Burn up
Measurements for the Equilibrium LEU Silicide RSG GAS (MPR-30) Core under a New Fuel Management Strategy. Annals of Nuclear Energy. 2016; 98: 211-217. DOI:

Pinem S, Tagor MS, Surbakti T, and Sunaryo GR. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code. Journal of Physics: Conference Series. 2018; 962(1): 012057. DOI:

Pinem S, Sembiring MS, Surbakti T, and Kuntoro I. Neutronic Analysis on Irradiation of the Leu Electroplating Target in the RSG-GAS Reactor for Production of 99mo Radionuclide. GANENDRA Majalah IPTEK Nuklir. 2018; 21(2): 55-61. DOI:

Pinem S, Surbakti T, and Tagor MS. Core Design TRIGA2000 Bandung using U3Si2Al Fuel Element MTR Type. Urania Jurnal Ilmiah Daur Bahan Bakar Nuklir. 2018; 24(2): 93-103. DOI:

Hastuti EP, Surbakti T, Widodo S, and Sudarmono. Abnormal Control Rod withdrawal Analysis for Innovative Research Reactor using PARET-ANL codes. Kerntechnik. 2018; 83(2): 96-105. DOI:

Pinem S, Sembiring TM, and Surbakti T. Core Conversion Design Study of TRIGA Mark 2000 Bandung using MTR Plate Type Fuel Element. International Journal of Nuclear Energy Science and Technology. 2018; 12(3): 222-238. DOI:

Dibyo S, Sudjatmi KS, Sihana, and Irianto ID. Simulation of Modified TRIGA-2000 with PlateType Fuel under LOFA using EUREKA2/RR-Code. Atom Indonesia. 2018; 44(1): 31-36. DOI:

Torabi M, Lashkari A, Masoudi SF, and Bagheri S. Neutronic Analysis of Control Rod Effect on Safety Parameters in Tehran Research Reactor. Nuclear Engineering and Technology. 2018; 50(7): 1017-1023. DOI:

Alhassan E, Akaho EHK, Nyarko BJB, Adoo NA, Agbodemegbe VY, Bansah CY, and Della R. Analysis of Reactivity Temperature Coefficient for Light Water Moderated HEU-UAL4 and LEU-UO2 Lattices of MNSR. Journal of Applied Sciences Research. 2010; 6(9): 1431-1439. Available from:

Rahgoshaya M and O. Noori-Kalkhoran. Calculation of Control Rod Worth and Temperature Reactivity Coefficient of Fuel and Coolant with Burn-up Changes for VVRS-2 MWth Nuclear Reactor. Nuclear Engineering and Design. 2013; 256: 322331. DOI:




How to Cite

Surbakti, T. and Purwadi, P. (2019) “Analysis of Neutronic Safety Parameters of the Multi-Purpose ReactorGerrit Augustinus Siwabessy (RSG-GAS) Research Reactor at Serpong”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 9(1), pp. 78–91. doi: 10.26740/jpfa.v9n1.p78-91.



Abstract views: 589 , PDF Downloads: 453