FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG
DOI:
https://doi.org/10.26740/jpfa.v7n2.p89-101Keywords:
reactor core, U3Si2-Al fuel, fuel burn up, WIMSD-5B, BATAN-FUELAbstract
The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor) type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN) and the IAEA (International Atomic Energy Agency). In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92), all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.
References
Setiyanto and Surbakti T. Analysis of Gamma Heating at Triga Mark Reactor Core Bandung Using Plate-Type Fuel. Jurnal Tri Dasa Mega. 2016; 18(3): 127-134. Available from: http://jurnal.batan.go.id/index.php/tridam/article/view/3004.
Rahgoshaya M and Noori-Kalkhoran O. Calculation of Control Rod Worth and Temperature Reactivity Coefficient of Fuel and Coolant with Burn-Up Changes for VVRS-2 MWth Nuclear Reactor. Nuclear Engineering and Design. 2013; 256: 322-331. DOI: https://dx.doi.org/10.1016/j.nucengdes.2012.08.033.
Varvayanni M, Sawa P, and Catsaros N. Control Rod Worth Calculations Using Deterministic and Stochastic Methods. Annals of Nuclear Energy. 2009; 36(11-12): 1718-1725. DOI: https://dx.doi.org/10.1016/j.anucene.2009.09.003.
Teruel FE and Rizwan-Uddin. An Innovative Research Reactor Design. Nuclear Engineering and Design. 2009; 239(2): 395-407. DOI: https://dx.doi.org/10.1016/j.nucengdes.2008.10.025.
Muhammad F and Majid A. Kinetic Parameters of a Material Test Research Reactor Fueled by High-Density U3Si2 Dispersion Fuels. Progress in Nuclear Energy. 2009; 51(1): 141-145. DOI: https://dx.doi.org/10.1016/j.pnucene.2008.02.004.
Suparlina L. Manajemen Konversi Teras Rsg-Gas Berbahan Bakar Silisida Tingkat Muat Tinggi. Jurnal Tri Dasa Mega. 2013; 15(3): 137-149. Available from: http://jurnal.batan.go.id/index.php/tridam/article/view/1860.
Rokhmadi and Surbakti T. Efek Densitas Bahan Bakar Terhadap Parameter Koefisien Reaktivitas Teras RRI. Jurnal Tri Dasa Mega. 2013; 15(2): 77-89. Available from: http://jurnal.batan.go.id/index.php/tridam/article/view/1865.
Surbakti T and Purwadi. Karakteristik Reaktivitas Teras Kerja RSG-GAS Selama 30 Tahun Beroperasi. Jurnal Penelitian Fisika dan Aplikasinya (JPFA). 2017; 7(1): 13-26. DOI: https://dx.doi.org/10.26740/jpfa.v7n1.p13-26.
Badan Tenaga Nuklir Nasional. Safety Analysis Report of RSG-GAS. Rev 10.1. Tengerang Selatan: Badan Tenaga Nuklir Nasional; 2011.
Surbakti T, Pinem S, and Sembiring TM. Analisis Pengaruh Densitas Bahan Bakar Silisida Terhadap Parameter Kinetik Teras Reaktor RSG-GAS. Jurnal Penelitian Fisika dan Aplikasinya (JPFA). 2013; 3(1): 19-30. DOI: https://dx.doi.org/10.26740/jpfa.v3n1.p19-30.
Kuntoro I and Sembiring TM. Desain Teras Alternatif untuk Reaktor Riset Inovatif (RRI) dari Aspek Neutronik. Jurnal Tri Dasa Mega. 2014; 16(1): 1-10. Available from: http://jurnal.batan.go.id/index.php/tridam/article/view/1854.
Suparlina L and Surbakti T. Analisis Pola Manajemen Bahan Bakar Desain Teras Reaktor Riset Tipe MTR. Jurnal Tri Dasa Mega. 2014; 14(3): 89-99. Available from: http://jurnal.batan.go.id/index.php/tridam/article/view/1851.
Surbakti T, Pinem S, Sembiring TM, Suparlina L, and Susilo J. Desain Konseptual Teras Reaktor Riset Inovatif Berbahan Bakar Uranium Molibdenum dari Aspek Neutronik. Jurnal Tri Dasa Mega. 2012; 3(14): 178-191. Available from: http://jurnal.batan.go.id/index.php/tridam/article/view/1878.
Pinem S, Sembiring TM, and Leim PH. Neutronic and Thermal-Hydraulic Safety Analysis for the Optimization the Uranium Target in the RSG-GAS Reactor. Atom Indonesia. 2016; 42(3): 123-128. DOI: https://doi.org/10.17146/aij.2016.532.
Hussien HM, Amin EH, Sakr AM. Effect of Core Configuration on the Burnup Calculations of MTR Research Reactors. Annals of Nuclear Energy. 2014; 63:285-294. DOI: https://dx.doi.org/10.1016/j.anucene.2013.06.029.
Downloads
Published
How to Cite
Issue
Section
License
Author(s) who wish to publish with this journal should agree to the following terms:
- Author(s) retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 4.0 License (CC BY-NC) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal for noncommercial purposes.
- Author(s) are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
The publisher publish and distribute the Article with the copyright notice to the JPFA with the article license CC-BY-NC 4.0.

