Combination of SRME And WEMR Seismic Noise Demultiple With CRS Stack Method

Authors

  • Emir Dzakwan Kamal Zein University of Lampung
  • Syamsurijal Rasimeng University of Lampung
  • Egie Wijaksono Research and Development Center of Oil and Gas Technology "LEMIGAS”

DOI:

https://doi.org/10.26740/jpfa.v14n2.p199-214

Keywords:

CRS, SRME, WEMR

Abstract

Marine seismic data recordings consist of signals and various types of noise which can reduce the quality of the resulting data processing model. This research purpose to increase the signal to noise ratio of a 2D seismic cross-section using the demultiple and stacking methods. This research method applying the Common Reflection Surface (CRS) stack method with a combination of two seismic noise demultiple methods, namely Surface Related Multiple Elimination (SRME) and Wave Equation Multiple Rejection (WEMR) using ProMAX software. The CRS stack results has been proven to be able to eliminate random noise, increase amplitude, and clarify existing reflector patterns. The radon analysis feature can also assist the data quality control process related to the presence of multiple noise indications. The SRME and WEMR demultiple results can predict different multiple models so that later they can be subtracted from the main data. The multiple SRME prediction results is characterized by shape, size and wavelet pattern, whose overall trace appearance tends to be similar and not too complex. The multiple WEMR prediction results has characteristics of shape, size and wavelet pattern whose overall trace is almost similar and slightly more complex. The combination of the CRS, SRME, and WEMR stack methods is concluded to be able to reduce the presence of noise, so that the main reflector pattern is easier to identify as the actual subsurface layer. However, there are still indications of the existence of multiple residues that have not been completely reduced. Therefore, further research is needed, especially in combining the CRS stack, F-K filter, Radon filter, SRME, and WEMR methods.

References

Anyiam UO & Uzuegbu E. 3D Seismic Attribute-Assisted Stratigraphic Framework and Depositional Setting Characterization of Frontier Miocene to Pliocene Aged Agbada Formation Reservoirs, Deep Offshore Niger Delta Basin. Marine and Petroleum Geology. 2020; 122: 104636. DOI: https://doi.org/10.1016/j.marpetgeo.2020.104636.

Ismail A, Ewida HF, Al-Ibiary MG, & Zollo A. Integrated Prediction of Deep-Water Gas Channels Using Seismic Coloured Inversion and Spectral Decomposition Attribute, West Offshore, Nile Delta, Egypt. NRIAG Journal of Astronomy and Geophysics. 2020; 9(1): 459-470. DOI: https://doi.org/10.1080/20909977.2020.1768324.

Faleide TS, Braathen A, Lecomte I, Mulrooney MJ, Midtkandal I, Bugge AJ, & Planke S. Impacts of Seismic Resolution on Fault Interpretation: Insights from Seismic Modelling. Tectonophysics. 2021; 816: 229008. DOI: https://doi.org/10.1016/j.tecto.2021.229008

Agustina K & Triyoso W. Analisis Eliminasi Multiple Menggunakan Metode FK Filter dan Transformasi Radon Parabola. Jurnal Geofisika. 2019; 15(1): 27-30. DOI: http://dx.doi.org/10.36435/jgf.v15i1.399

Wang K, Hu T, Liu X, Wang S, & Wei J. (2021). Suppressing Seismic Multiples Based On The Deep Neural Network Method with Data Augmentation Training. Chinese Journal of Geophysics. 2021; 64(11): 4196-4214. DOI: https://doi.org/10.6038/cjg2021O0517.

Sun J, Slang S, Elboth T, Greiner TL, McDonald S, & Gelius LJ. Attenuation of Marine Seismic Interference Noise Employing A Customized U‐Net. Geophysical Prospecting. 2020; 68(3): 845-871. DOI: https://doi.org/10.1111/1365-2478.12893.

Li ZC, & Qu YM. Research Progress On Seismic Imaging Technology. Petroleum Science. 2022; 19(1), 128-146. DOI: https://doi.org/10.1016/j.petsci.2022.01.015.

Heilmann Z & Deidda GP. Common-Reflection-Surface Stack with Global Simultaneous Multi-Parameter Velocity Analysis—A Fit for Shallow Seismics. Applied Sciences. 2024; 14(15): 6748. DOI: https://doi.org/10.3390/app14156748.

Zhang D, Verschuur DJ, Qu S, & Chen Y. Surface-Related Multiple Leakage Extraction Using Local Primary-And-Multiple Orthogonalization. Geophysics. 2020; 85(1): V81-V97. DOI: https://doi.org/10.1190/geo2019-0465.1.

Bao P, Shi Y, Wang W, Xu J, & Guo X. Surface-Related and Internal Multiple Elimination Using Deep Learning. Energies. 2022; 15(11): 3883. DOI: https://doi.org/10.3390/en15113883.

Gu Z & Wu RS. Internal Multiple Removal and Illumination Correction for Seismic Imaging. IEEE Transactions on Geoscience and Remote Sensing. 2021; 60: 1-11. DOI: https://doi.org/10.1109/TGRS.2021.3080210.

Cheng L, Tura A, Simmons J, Snieder R, Angelov PV, Srinivasa RN, & Akther S. Marchenko Imaging Assisted by Vertical Seismic Profiling Data for Land Seismic Data in the Middle East. Geophysics. 2024; 89(2): B105-B117. DOI: https://doi.org/10.1190/geo2023-0167.1.

Schwardt M, Wilken D, & Rabbel W. Attenuation of Seismic Multiples in Very Shallow Water: An Application in Archaeological Prospection Using Data Driven Approaches. Remote Sensing. 2021; 13(10): 1871. DOI: https://doi.org/10.3390/rs13101871.

Blondel S, Ford J, Lockwood A, Del Ben A, & Camerlenghi A. Reprocessing 2-D Airgun Seismic Reflection Data SALTFLU (Salt Deformation and Sub-Salt Fluid Circulation in the Algero-Balearic Abyssal Plain) in the Balearic Promontory and the Algerian Basin. Marine Geophysical Research. 2023; 44(2): 13. DOI: https://doi.org/10.1007/s11001-023-09512-5.

Dondurur D. Acquisition and Processing of Marine Seismic Data. Amsterdam: Elsevier; 2018. DOI: http://dx.doi.org/10.1016/C2016-0-01591-7.

Posamentier HW, Paumard V, & Lang SC. Principles of Seismic Stratigraphy and Seismic Geomorphology I: Extracting Geologic Insights From Seismic Data. Earth-Science Reviews. 2022; 228: 103963. DOI: https://doi.org/10.1016/j.earscirev.2022.103963.

Fadul MF, El Dawi MG, & Abdel-Fattah MI. Seismic Interpretation and Tectonic Regime of Sudanese Rift System: Implications for Hydrocarbon Exploration in Neem Field (Muglad Basin). Journal of Petroleum Science and Engineering. 2020; 191: 107223. DOI: https://doi.org/10.1016/j.petrol.2020.107223.

Singh JA, le Roux A, & Naidoo S. Marine Seismic Surveys for Hydrocarbon Exploration: What's At Stake? South African Journal of Science. 2022; 118(3-4): 1-7. DOI: http://dx.doi.org/10.17159/sajs.2022/13420.

Poole G, Farshad M, Jin Z, & Li B. Wave-Equation Deconvolution: A Short-Period Demultiple Tool for Streamer, OBN and Land Environments. First Break. 2022; 40(12): 59-64. Available from: https://www.viridiengroup.com/sites/default/files/2022-12/CGG_Wave-equation-deconvolution_2022.pdf.

Üge MA & Kanli Aİ. Comparison of The Results of The Suppression of Surface Related Multiple Reflections by Predictive Deconvolution in Pre- and Post-Stack in 2D Marine Seismic Reflection Data: A Case Study from the Sea of Marmara. Bulletin of the Mineral Research and Exploration. 2022; 167(167): 51-64. DOI: https://doi.org/10.19111/bulletinofmre.909820.

Osinowo OO. Reprocessing of Regional 2D Marine Seismic Data of Part of Taranaki Basin, New Zealand using Latest Processing Techniques. GeoScience Engineering. 2020; 66(2): 95-116. DOI: http://dx.doi.org/10.3968/11574.

Chen N, Li CF, Wen YL, Wang P, Zhao XL, & Wan XL. Seismic Multiple Attenuation in The Continent–Ocean Transition Zone of The Northern South China Sea. Journal of Marine Science and Engineering, 2023; 11(1): 227. DOI: https://doi.org/10.3390/jmse11010227.

Al-Rahim AA & Abdulkareem LN. Multiple and Coherent Noise Removal from X-Profile 2D Seismic Data of Southern Iraq Using Common Depth Point Muting Procedures and Depending on Madagascar Open Source Package. The Iraqi Geological Journal. 2023; 56(2E): 323-330. DOI: https://doi.org/10.46717/igj.56.2E.23ms-2023-11-28.

Dirgantara F, Lin ATS, & Liu CS. Seismic De-Multiple Strategy in The Submarine Slope of Taiwan Accretionary Wedge. Exploration Geophysics. 2023; 54(2): 117-132. DOI: https://doi.org/10.1080/08123985.2022.2086040.

Song H, Mao W, Tang H, Xu Q, & Ouyang W. Multiple attenuation based on connected-component analysis and high-resolution parabolic Radon transform. Journal of Applied Geophysics. 2022; 199: 104580. DOI: https://doi.org/10.1016/j.jappgeo.2022.104580.

Zein EDK, Rasimeng S, & Wijaksono E. Advanced Processing of 2D Marine Reflection Seismic Data Using the Common Reflection Surface (CRS) Stack Method with KL Filter Application: Pengolahan Lanjut Data Seismik Refleksi 2D Lait Menggunakan Metode Common Reflection Surface (CRS) Stack dengan Penerapan KL-Filter. Jurnal Geocelebes. 2023; 7(2): 168-175. DOI: https://doi.org/10.20956/geocelebes.v7i2.22588.

Wang K, Hu T, Wang S, & Wei J. Seismic Multiple Suppression Based On A Deep Neural Network Method for Marine Data. Geophysics. 2022; 87(4): V341-V365. DOI: https://doi.org/10.1190/geo2021-0206.1.

Lai SY, Lin YN, & Hsu HH. Efficient 2D Multiple Attenuation Using SRME with Curvelet-Domain Subtraction. Marine Geophysical Research. 2022; 43(1): 1. DOI: https://doi.org/10.1007/s11001-021-09464-8.

Güney R, Karslı H, & Dondurur D. Optimum Parameter Selection in Offset-Dependent Predictive Deconvolution: Testing on multichannel marine seismic data. Marine geophysical research. 2019; 40(4): 601-617. DOI: https://doi.org/10.1007/s11001-019-09390-w.

Ma C, Fu Q, & Weglein AB. Comparison of The Inverse Scattering Series Free-Surface Multiple Elimination (ISS FSME) Algorithm with The Industry-Standard Surface-Related Multiple Elimination (SRME): Defining The Circumstances in Which Each Method is the Appropriate Toolbox Choice. Geophysics. 2019; 84(5): S459-S478. DOI: https://doi.org/10.1190/geo2018-0411.1.

Nainggolan TB, Rasidin SM, & Setiadi I. Combined Multiple Attenuation Methods and Geological Interpretation: Seram Sea Case Study 2D Marine Seismic Data. Bulletin of the Marine Geology. 2019; 34(1): 17-28. DOI: http://dx.doi.org/10.32693/bomg.34.1.2019.622.

Yuza NH, Nainggolan TB, & Manik HM. Multiple Attenuation Methods in Short-Offset 2D Marine Seismic Data: A Case Study in Cendrawasih Bay. IOP Conference Series: Earth and Environmental Science. 2020; 429(1): 012031. DOI: https://doi.org/10.1088/1755-1315/429/1/012031.

Purwanti S. Eliminasi Artefak Dalam Penampang Seismik Dengan Tahapan Pengolahan Data Seismik Multichannel di Area Bone Line 1. Doctoral Dissertation. Bandung: Universitas Pendidikan Indonesia; 2015. Available from: http://repository.upi.edu/18896

Wiggins JW. Attenuation of Complex Water-Bottom Multiples by Wave-Equation-Based Prediction and Subtraction. Geophysics. 1988; 53(12): 1527-1539. DOI: https://doi.org/10.1190/1.1442434.

Liu Y, Luo Y, Ma Y, & Liu H. High-resolution Stacking of Seismic Data with Fast Capon Beamforming. IEEE Geoscience and Remote Sensing Letters. 2024; 21: 7501605. DOI: https://doi.org/10.1109/LGRS.2024.3357446.

Rad PB & Macelloni L. Improving 3D Water Column Seismic Imaging Using the Common Reflection Surface Method. Journal of Applied Geophysics. 2020; 179: 104072. DOI: https://doi.org/10.1016/j.jappgeo.2020.104072.

Rad PB & Hickey CJ. Using Common-Reflection-Surface Stack for Enhanced Near-Surface Seismic Reflection Imaging: Examples from Consolidated and Unconsolidated Environments. Geophysics. 2022; 87(5): EN45-EN56. DOI: https://doi.org/10.1190/geo2021-0437.1.

Hu Y, Yang H, Luan Z, Gan L, Yang G, & Qian D. Massively Scaling Seismic Processing on Sunway Taihulight Supercomputer. IEEE Transactions on Parallel and Distributed Systems. 2019; 31(5): 1194-1208. DOI: https://doi.org/10.1109/TPDS.2019.2962395.

Bauer A, Schwarz B, Werner T, & Gajewski D. Unsupervised Event Identification and Tagging for Diffraction Focusing. Geophysical Journal International. 2019; 217(3): 2165-2176. DOI: https://doi.org/10.1093/gji/ggz106.

Acuna YPV & Sun Y. An Efficiency‐Improved Genetic Algorithm and Its Application on Multimodal Functions and A 2D Common Reflection Surface Stacking Problem. Geophysical Prospecting. 2020; 68(4): 1189-1210. DOI: https://doi.org/10.1111/1365-2478.12920.

Bialas J, Bohlen T, Dannowski A, Eisenberg-Klein G, Gassner L, Gehrmann R, Heeschen K, Hölz S, Jegen M, Klaucke I, Krieger M, Mann J, Müller C, Prüßmann J, Schicks J, Schünemann E, Schwalenberg K, Sommer M, Smilde PL, Spangenberg E, Trappe H, & Zander T. Joint Interpretation of Geophysical Field Experiments in The Danube Deep-Sea Fan, Black Sea. Marine and Petroleum Geology. 2020; 121: 104551. DOI: https://doi.org/10.1016/j.marpetgeo.2020.104551.

Norden B, Bauer K, & Krawczyk CM. From Pilot Knowledge Via Integrated Reservoir Characterization to Utilization Perspectives of Deep Geothermal Reservoirs: The 3D Model of Groß Schönebeck (North German Basin). Geothermal Energy. 2023; 11(1): 1. DOI: https://doi.org/10.1186/s40517-022-00242-2.

Li Z, Li Q, Zhang D, Tan F, Rajaure S, Zhao G, Tripathi GN, Du B, & Yang P. Seismic Survey in Lesser Himalayan Thrust Belt, Western Nepal. International Journal of Geophysics. 2022; 2022(1): 8026088. DOI: https://doi.org/10.1155/2022/8026088.

Zhang Q, Wang H, Chen W, & Huang G. A Local Radon Transform for Seismic Random Noise Attenuation. Journal of Applied Geophysics. 2021; 186: 104264. DOI: https://doi.org/10.1016/j.jappgeo.2021.104264.

Ibe AA & Azuoko GB. Study of Inter-Bed Multiples in An Onshore Niger Delta Field. Arabian Journal of Geosciences. 2021; 14(12): 1147. DOI: https://doi.org/10.1007/s12517-021-07511-7.

Abbasi S & Ismail A. Elimination of Multiples From Marine Seismic Data Using The Primary‐Multiple Intermediate Velocities in The τ‐Q Domain. Journal of seismic exploration. 2021; 30: 85-100. Available from: http://www.geophysical-press.com/online/VOL30-1_art5.pdf.

Kumar D & Ahmed I. Seismic noise. In: H. Gupta (eds), Encyclopedia of Solid Earth Geophysics. Switzerland: Springer, Cham; 2020: 1-6. DOI: https://doi.org/10.1007/978-3-030-10475-7_146-1.

Yang F, Wang D, Hu B, Zhu H, & Sun J. 3D Surface-Related Multiples Elimination Based on Improved Apex-Shifted Radon Transform. Acta Geophysica, 2021; 69: 1679-1696. DOI: https://doi.org/10.1007/s11600-021-00643-0.

Erlangga MP. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method. AIP Conference Proceedings. 2015; 1656(1): 070005. DOI: https://doi.org/10.1063/1.4917151.

Nasıf A. Processing and Joint Interpretation of Multi-Resolution Marine Seismic Datasets. Journal of Applied Geophysics. 2024; 227: 105429. DOI: https://doi.org/10.1016/j.jappgeo.2024.105429.

Wright LJ, Scholz CA, Muirhead JD, & Shillington DJ. Heterogeneous Strain Distribution in the Malawi (Nyasa) Rift, East Africa: Implications for Rifting in Magma‐Poor, Multi‐Segment Rift Systems. Tectonics. 2023; 42(9): e2022TC007486. DOI: https://doi.org/10.1029/2022TC007486.

Nasıf A. Optimal Processing of Single-Channel Sparker Marine Seismic Data. Acta Geophysica. 2024; 73: 421-437. DOI: https://doi.org/10.1007/s11600-024-01403-6.

Downloads

Additional Files

Published

2024-12-31

How to Cite

Zein, E. D. K., Rasimeng , S. and Wijaksono, E. (2024) “Combination of SRME And WEMR Seismic Noise Demultiple With CRS Stack Method”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 14(2), pp. 199–214. doi: 10.26740/jpfa.v14n2.p199-214.

Issue

Section

Articles
Abstract views: 104 , PDF Downloads: 81 , PDF Downloads: 0