Reconstruction of the Indian Ocean Tsunami in 2004 in Sabang Based on the Current Land Cover for Tsunami Evacuation Sites Recommendations

Authors

  • Abdi Jihad Badan Meteorologi, Klimatologi, dan Geofisika
  • Zaenal Al Atas Badan Meteorologi, Klimatologi, dan Geofisika
  • Vrieslend Haris Banyunegoro Badan Meteorologi, Klimatologi, dan Geofisika
  • Herdiyanti Resty Anugrahningrum Badan Meteorologi, Klimatologi, dan Geofisika
  • Rika Adenila Ginting Badan Meteorologi, Klimatologi, dan Geofisika
  • Kurniallah Perdana Putra Hokkaido University
  • Andi Azhar Rusdin Badan Meteorologi, Klimatologi, dan Geofisika
  • Tommy Ardiyansyah Badan Meteorologi, Klimatologi, dan Geofisika
  • Tatok Yatimantoro Hokkaido University

DOI:

https://doi.org/10.26740/jpfa.v13n2.p174-189

Keywords:

Tsunami Evacuation Sites, Land Cover, Sabang, Earthquake, Tsunami

Abstract

Sabang City has grown in term of city’s population as well as the tourism activity. The development also meant there are more area that has been used when compared to the time before the 2004 tsunami. This research was developed to re-identify tsunami-prone zones with the current land cover condition in Sabang City and to provide recommended safe locations, alternative evacuation routes, and additional evacuation sites. We used Cornell Multi-grid Coupled Tsunami Model (COMCOT) to carried out the tsunami simulation added with updated land cover to provide more accurate simulation model. The simulation pointed out several tsunami hazard zones in Sabang City, such as Balohan, Kuta Ateuh, and Iboih with expected tsunami heights to be more than 3 meters and arrival time less than 60 minutes. Those areas then surveyed to develop recommendations for tsunami risk reductions. The recommendations included nine additional evacuation buildings are proposed, three sites in each zone. Another recommendation is in form of evacuation routes in each zone to complement existing routes stated in RTRW document.

References

Bonacho J and Oliveira CS. Multi-Hazard Analysis of Earthquake Shaking and Tsunami Impact. International Journal of Disaster Risk Reduction. 2018; 31: 275–280. DOI: https://doi.org/10.1016/j.ijdrr.2018.05.023.

Grezio A, Marzocchi W, Sandri L, and Gasparini P. A Bayesian Procedure for Probabilistic Tsunami Hazard Assessment. Natural Hazards. 2010; 53: 159–174. DOI: https://doi.org/10.1007/s11069-009-9418-8.

Heidarzadeh M, Ishibe T, Harada T, Natawidjaja DH, Pranantyo IR, and Widyantoro BT. High Potential for Splay Faulting in The Molucca Sea, Indonesia: November 2019 mw 7.2 Earthquake and Tsunami. Seismological Research Letters. 2021; 92(5): 2915–2926. DOI: https://doi.org/10.1785/0220200442.

Small DT and Melgar D. Can Stochastic Slip Rupture Modeling Produce Realistic M9+ Events? JGR Solid Earth. 2023; 128(3): e2022JB025716. DOI: https://doi.org/10.1029/2022JB025716.

Swaroop HL, Yajdani PSk, and Reddy PSRK. Response of Coastal Structures against Tsunami Forces and Its Variation When Impact Load is Applied on Exterior and Interior Columns under Different Soil Conditions. International Journal of Recent Technology and Engineering (IJRTE). 2020; 8: 1468–1473. DOI: https://doi.org/10.35940/ijrte.E5886.018520.

Subarya C, Chlieh M, Prawirodirdjo L, Avouac JP, Bock Y, Sieh K, et al. Plate-Boundary Deformation Associated with the Great Sumatra-Andaman Earthquake. Nature. 2006; 440: 46-51. DOI: https://doi.org/10.1038/nature04522.

Triyoso W and Sahara DP. Seismic Hazard Function Mapping Using Estimated Horizontal Crustal Strain Off West Coast Northern Sumatra. Frontiers in Earth Science (Lausanne). 2021; 9: 558923. DOI: https://doi.org/10.3389/feart.2021.558923.

Puspito NT and Gunawan I. Tsunami Sources in the Sumatra Region, Indonesia and Simulation of the 26 December 2004 Aceh Tsunami. ISET Journal of Earthquake Technology. 2005; 42(4): 111-125. Available from: https://iset.org.in/public/publications/75578_459.pdf.

Puspito NT and Gunawan I. Comparison of Two Different Earthquake Sources for the 26 December 2004 Aceh Tsunami Simulation. Journal of Engineering and Technological Sciences. 2006; 38(1): 51-77. DOI: https://doi.org/10.5614/itbj.eng.sci.2006.38.1.5.

Jihad A, Muksin U, Syamsidik, Suppasri A, Ramli M, and Banyunegoro VH. Coastal and Settlement Typologies-Based Tsunami Modeling Along the Northern Sumatra Seismic Gap Zone for Disaster Risk Reduction Action Plans. International Journal of Disaster Risk Reduction. 2020; 51: 101800. DOI: https://doi.org/10.1016/j.ijdrr.2020.101800.

Jihad A, Muksin U, Syamsidik, Ramli M, Banyunegoro VH, Simanjuntak AVH, et al. Tsunami Evacuation Sites in The Northern Sumatra (Indonesia) Determined Based on The Updated Tsunami Numerical Simulations. Progress in Disaster Science. 2023; 18: 100286. DOI: https://doi.org/10.1016/j.pdisas.2023.100286.

Qin X, Motley MR, and Marafi NA. Three-Dimensional Modeling of Tsunami Forces on Coastal Communities. Coastal Engineering. 2018; 140: 43–59. DOI: https://doi.org/10.1016/j.coastaleng.2018.06.008.

Gunawan E, Meilano I, Abidin HZ, Hanifa NR, and Susilo. Investigation of The Best Coseismic Fault Model of the 2006 Java Tsunami Earthquake Based on Mechanisms of Postseismic Deformation. Journal of Asian Earth Science. 2016; 117: 64–72. DOI: https://doi.org/10.1016/j.jseaes.2015.12.003.

Akbar H, Afifuddin M, and Rani HA. Infrastruktur Prioritas pada Zona Pariwisata di Kota Sabang dengan Menggunakan Metode Location Quotient (LQ) dan Analytic Network Process (ANP). Jurnal Teknik Sipil. 2017; 6(3): 233-242. Available from: https://jurnal.usk.ac.id/JTS/article/view/9804.

Rani HA, Afifuddin M, and Akbar H. Tourism Infrastructure Development Prioritization in Sabang Island Using Analytic Network Process Methods. AIP Conference Proceedings. 2017; 1903: 070001. DOI: https://doi.org/10.1063/1.5011570.

Achmad A, Burhan IM, Zuraidi E, and Ramli I. Determination of Recharge Areas to Optimize the Function of Urban Protected Areas on A Small Island. IOP Conference Series: Earth and Environmental Science. 2020; 452: 012104. DOI: https://doi.org/10.1088/1755-1315/452/1/012104.

Leelawat N, Latcharote P, Suppasri A, Sararit T, Srivichai M, Tang J, et al. Today in Thailand: Multidisciplinary Perspectives on The Current Tsunami Disaster Risk Reduction. In Y. Dilek, Y. Ogawa, and Y. Okubo. Characterization of Modern and Historical Seismic–Tsunamic Events, and Their Global–Societal Impacts. London: Geological Society of London; 2021. DOI: https://doi.org/10.1144/SP501-2019-97.

Lailissa’adah L, Sulastri S, and Syamsidik S. Intergenerational Tsunami Knowledge Transfer Sixteen Years After the Tsunami in Aceh, Indonesia. KnE Social Sciences. Dubai: KnE Publishing; 2022: 45-58. DOI: https://doi.org/10.18502/kss.v7i16.12152.

Widiyanto S, Adi D, and Soans RV. Agent-Based Simulation Disaster Evacuation Awareness on Night Situation in Aceh. IPTEK The Journal of Engineering. 2022; 8(1): 36-43. DOI: https://doi.org/10.12962/j23378557.v8i1.a12799.

Iskandar D, Sinar TS, Samad IA, and Gadeng AN. The Values of Natural Disaster Mitigation in Discourse: The True Story of the Acehnese Tsunami Victims. Forum Geografi. 2022; 36(1): 80-90. DOI: https://doi.org/10.23917/forgeo.v35i2.14032.

Pemerintah Kota Sabang. Qanun No 6 Tahun 2012. Sabang: Pemerintah Kota Sabang; 2012.

Pemerintah Kota Sabang. Rencana Tata Ruang Wilayah (RTRW) Kota Sabang Materi Teknis Pemerintah Kota Sabang. Sabang: Pemerintah Kota Sabang; 2012.

Tursina, Syamsidik, Kato S, and Afifuddin M. Coupling Sea-Level Rise with Tsunamis: Projected Adverse Impact of Future Tsunamis on Banda Aceh City, Indonesia. International Journal of Disaster Risk Reduction. 2021; 55: 102084. DOI: https://doi.org/10.1016/j.ijdrr.2021.102084.

Satake K and Tanioka Y. Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones. In Sauber J. and Dmowska R. (eds). Seismogenic and Tsunamigenic Processes in Shallow Subduction Zones. Pageoph Topical Volumes. Basel: Birkhäuser; 1999. DOI: https://doi.org/10.1007/978-3-0348-8679-6_5.

Syamsidik, Rasyif TM, Fritz HM, Idris Y, and Rusydy I. Fragility Based Characterization of Alternative Tsunami Evacuation Buildings in Banda Aceh, Indonesia. International Journal of Disaster Risk Reduction. 2023; 88: 103607. DOI: https://doi.org/10.1016/j.ijdrr.2023.103607.

Tanioka Y, Yudhicara, Kususose T, Kathiroli S, Nishimura Y, Iwasaki SI, et al. Rupture Process of the 2004 Great Sumatra-Andaman Earthquake Estimated from Tsunami Waveforms. Earth, Planets and Space. 2006; 58: 203-209. DOI: https://doi.org/10.1186/BF03353379.

Yeo I, Jung TH, Son S, and Yoon HD. Probabilistic Assessment of Delayed Multi-fault Rupture Effect on Maximum Tsunami Runup along the East Coast of Korea. KSCE Journal of Civil Engineering. 2022; 26: 1-12. DOI: https://doi.org/10.1007/s12205-021-0272-x.

Syamsidik, Al Farizi MD, Tursina, Yulianur A, Rusydy I, and Suppasri A. Assessing Probability of Building Damages Due to Tsunami Hazards Coupled with Characteristics of Buildings in Banda Aceh, Indonesia: A Way to Increase Understanding of Tsunami Risks. International Journal of Disaster Risk Reduction. 2023; 90: 103652. DOI: https://doi.org/10.1016/j.ijdrr.2023.103652.

Rasyif TM, Kato S, Syamsidik, and Okabe T. Numerical Simulation of Morphological Changes Due to the 2004 Tsunami Wave Around Banda Aceh, Indonesia. Geosciences (Switzerland). 2019; 9(3): 125. DOI: https://doi.org/10.3390/geosciences9030125.

Gusman AR, Tanioka Y, and Takahashi T. Numerical Experiment and A Case Study of Sediment Transport Simulation of the 2004 Indian Ocean tsunami in Lhok Nga, Banda Aceh, Indonesia. Earth, Planets and Space. 2012; 64: 3. DOI: https://doi.org/10.5047/eps.2011.10.009.

Oryan B and Buck WR. Larger Tsunamis from Megathrust Earthquakes Where Slab Dip is Reduced. Nature Geoscience. 2020; 13: 319-324. DOI: https://doi.org/10.1038/s41561-020-0553-x.

Tanioka Y, Miranda GJA, Gusman AR, and Fujii Y. Method to Determine Appropriate Source Models of Large Earthquakes Including Tsunami Earthquakes for Tsunami Early Warning in Central America. Pure and Applied Geophysics. 2017; 174: 3237–3248. DOI: https://doi.org/10.1007/s00024-017-1630-y.

Syamsidik, Rasyif TM, Suppasri A, Fahmi M, Al’ala M, Akmal W, et al. Challenges in Increasing Community Preparedness Against Tsunami Hazards in Tsunami-Prone Small Islands Around Sumatra, Indonesia. International Journal of Disaster Risk Reduction. 2020; 47: 101572. DOI: https://doi.org/10.1016/j.ijdrr.2020.101572.

NOAA. National Geophysical Data Center/ World Data Service: NCEI/WDS Global Historical Tsunami Database. Asheville: NOAA National Centers for Environmental Information; 2018. DOI: https://doi.org/10.7289/V5PN93H7.

Syamsidik, Rasyif TM, and Kato S. Development of Accurate Tsunami Estimated Times of Arrival for Tsunami-Prone Cities in Aceh, Indonesia. International Journal of Disaster Risk Reduction. 2015; 14: 403–410. DOI: https://doi.org/10.1016/j.ijdrr.2015.09.006.

Direktorat Jenderal Bina Marga. Pedoman Perencanaan Jalur Evakuasi Bencana Alam Tsunami. Jakarta: Kementerian PUPR; 2023. Available from: https://binamarga.pu.go.id/index.php/konten/ebook_show/nspk/1954_10pbm2023-pedoman-perencanaan-jalur-evakuasi-bencana-alam-tsunami-.

Downloads

Published

2023-12-30

How to Cite

Jihad, A., Al Atas, Z., Banyunegoro, V. H., Anugrahningrum, H. R., Ginting, R. A., Putra, K. P., Rusdin, A. A., Ardiyansyah, T. and Yatimantoro, T. (2023) “Reconstruction of the Indian Ocean Tsunami in 2004 in Sabang Based on the Current Land Cover for Tsunami Evacuation Sites Recommendations”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 13(2), pp. 174–189. doi: 10.26740/jpfa.v13n2.p174-189.

Issue

Section

Articles
Abstract views: 63 , PDF Downloads: 44