The Analysis of the Physical Quantity N Grid, v, and dt in Solving the Schrödinger Equation Using the Crank-Nicolson Method

Authors

  • Sri Purwaningsih Universitas Jambi
  • Ramacos Fardela Universitas Andalas

DOI:

https://doi.org/10.26740/jpfa.v12n1.p1-13

Keywords:

Crack-Nicolson, Schrödinger equation, wave function

Abstract

Solving the Schrödinger equation may result in a wave function of a particle in a quantum system, which can afford the information with respect to the particle’s behavior. The Schrödinger equation is useful for examining probability density and determining a wave function of free particles. This research focuses on solving the Schrödinger equation using the Crank-Nicolson method in free particles. The Crank-Nicolson method is a method of solving partial differential equations in the form of the Schrodinger equation, this method is very stable and accurate in giving numerical results. The result indicates that probability density and the form of the wave function of free particles are identified by varying the v, N grid, and dt. When dt = 1, v = 1, and v = 2, and the N grid remains at a score of 100, we acquire the same forms of the wave function and probability density. And yet, when dt = 2, v =2, and the N grid remains at a score of 100, the form of the wave function and probability density is constricted in one area. The N grid and dt are the two most affecting factors on the three variants. Using the Crank-Nicolson method, we can determine the wave function and probability for free particles by varying the value of N grid, dt.

References

Shangwha Y. Klein-Gordon Equation and wave Function Free Particle in Rindler Space-Time, International Journal of Advanced Reasearch in Physics Science, 2020; 7(9): 10-12. Available from: https://www.arcjournals.org/pdfs/ijarps/v7-i9/3.pdf.

Bondar DI, Lompay RR, and Liu WK. Quantum Mechanics of a Free Particle from properties of the Dirac delta function, American Journal Physics, 2011; 79: 392-394. DOI: https://doi.org/10.1119/1.3533715.

Berger MS and Maziashvilli M. Free Particle wavefunction in light of the minimal-length deformed quantum mechanics and some of its phenomenological implication, Physical Review D, 2011; 84: 044043. DOI: https://doi.org/10.1103/PhysRevD.84.044043.

Saxon DS. Elementary quantum mechanics. US: Courier Corporation; 2013.

Ajlouni AW, Joudeh B, and Salameh B. Particle in a box with dissipation, Journal Applied Science, 2007; 7(9): 1314-1320. DOI: https://doi.og/10.3923/jas.2007.1314.1320.

Olavo LSF. Foundations of quantum mechanics: non-relativistic theory. Physica A: Statistical Mechanics and its Applications. 1999; 262(1-2): 197-214. DOI: https://doi.org/10.1016/S0378-4371(98)00395-1.

Boonserm P and Visser M. Reformulating the Schrödinger equation as a Shabat–Zakharov system. Journal of Mathematical Physics. 2010; 51(2): 022105. DOI: https://doi.org/10.1063/1.3282847.

Kumar PR and Dong SH. A new quantization rule to the bound state problem in non-relativistic quantum mechanics. Physics Letters A. 2021; 417: 127700. DOI: https://doi.org/10.1016/j.physleta.2021.127700.

Poveda LA, de Peralta LG, Pittman J, and Poirier B. Non-relativistic Approach to Relativistic Quantum Mechanics: The Case of the Harmonic Oscillator. Foundations of Physics. 2022; 52(1): 29. DOI: https://doi.org/10.1007/s10701-022-00541-5.

Guo X and Xu M. Some physical applications of fractional Schrödinger equation. Journal of mathematical physics. 2006; 47(8): 082104. DOI: https://doi.org/10.1063/1.2235026.

Dong J and Xu M. Some solutions to the space fractional Schrödinger equation using momentum representation method. Journal of mathematical physics. 2007; 48(7): 072105. DOI: https://doi.org/10.1063/1.2749172.

Han J, Zhang L, and Weinan E. Solving many-electron Schrödinger equation using deep neural networks. Journal of Computational Physics. 2019; 399: 108929. DOI: https://doi.org/10.1016/j.jcp.2019.108929.

Laskin N. Fractals and quantum mechanics. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2000; 10(4): 780-790. DOI: https://doi.org/10.1063/1.1050284.

Owolabi KM and Atangana A. Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative. The European Physical Journal Plus. 2016; 131(9): 335. DOI: https://doi.org/10.1140/epjp/i2016-16335-8.

Nagel JR. A review and application of the finite-difference time-domain algorithm applied to the Schrodinger equation. ACES Journal-Applied Computational Electromagnetics Society. 2009; 24(1): 1-8. Available from https://journals.riverpublishers.com/index.php/ACES/article/view/15873.

van Dijk W, Toyama FM, Prins SJ, and Spyksma K. Analytic time-dependent solutions of the one-dimensional Schrödinger equation. American Journal of Physics. 2014; 82(10): 955-961. DOI: https://doi.org/10.1119/1.4885376.

van Dijk W and Toyama FM. Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials. Physical Review E. 2014; 90: 063309. DOI: https://doi.org/10.1103/PhysRevE.90.063309.

Sellier JM, Nedjalkov M, and Dimov I. An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism. Physics Reports. 2015; 577: 1-34. DOI: https://doi.org/10.1016/j.physrep.2015.03.001.

Pauli W. General principles of quantum mechanics. New York: Springer Science & Business Media; 2012.

Blatt R and Roos CF. Quantum simulations with trapped ions. Nature Physics. 2012; 8(4): 277-284. DOI: https://doi.org/10.1038/nphys2252.

Weinberg S. The trouble with quantum mechanics. The New York Review of Books. 2017; 19: 1-7. Available: http://quantum.phys.unm.edu/466-19/QuantumMechanicsWeinberg.pdf.

Valentini A. Foundations of statistical mechanics and the status of the Born rule in de Broglie-Bohm pilot-wave theory. In Statistical mechanics and scientific explanation: determinism, indeterminism and laws of nature. 2020: pp. 423-477. DOI: https://doi.org/10.1142/9789811211720_0012.

Rosique F, Navarro PJ, Fernandez C, and Padilla A. A systematic review of perception system and simulators for autonomous vehicles research. Sensors. 2009; 19(3): 648. DOI: https://doi.org/10.3390/s19030648.

Vesely FJ, Davenport F, McKay S, and Christian W. Computational Physics: An Introduction. Computers in Physics. 1996; 10: 47. DOI: https://doi.org/10.1063/1.4822354.

Horbatsch M. Quantum Mechanics Using Maple. New York: Springe; 1995. Available from: https://link.springer.com/content/pdf/bfm:978-3-642-79538-1/1.pdf.

Amodio P, Brugnano L, and Iavernaro F. Analysis of Spectral Hamiltonian Boundary Value Methods (SHBVMs) for the numerical solution of ODE problems. Numerical Algorithms. 2020; 83(4): 1489-1508. DOI: https://doi.org/10.1007/s11075-019-00733-7.

Moyer CA. Numerov extension of transparent boundary conditions for the Schrödinger equation in one dimension. American Journal of Physics. 2004; 72(3): 351-358. DOI: https://doi.org/10.1119/1.1619141.

Pang T. An introduction to computational physics. American Journal of Physics. 1999; 67(1): 94-95. DOI: https://doi.org/10.1119/1.19198.

Olga VM and Vladimir IM, Probability Representation of Quantum State. Entropy. 2021; 23(5): 549. DOI: https://doi.org/10.3390/e23050549.

Fadugba SE, Edogbanya OH, and Zelibe SC. Crank-Nicolson methods for solving Parabolic Partial Differential Equations. International Journal of Applied Mathematics and Modeling IJA2M. 2013; 1(3): 8-23.

Fernandes N and Bhadkamkar R. An overview of a Crank-Nicolson to solve parabolic differential partial equation. International Journal of Scientific and Engineering Research. 2016; 7(12): 1074-1078. Available from: https://www.ijser.org/onlineResearchPaperViewer.aspx?AN-OVERVIEW-OF-A-CRANK-NICOLSON-METHOD-TO-SOLVE-PARABOLIC-PARTIAL-DIFFERENTIAL-EQUATION.pdf.

Wang D, Xiao A, and Yang W. Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. Journal of Computation Physics. 2013; 242. 670-681, DOI: https://doi.org/10.1016/j.jcp.2013.02.037.

Li R, Gao Y, Yang W, and Chen Z. A Crank–Nicolson discontinuous finite volume element method for a coupled non-stationary Stokes–Darcy problem, Journal of Computational and Applied Mathematics. 2019; 353(C): 86-112. DOI: https://doi.org/10.1016/j.cam.2018.12.025.

Ran M and Zhang C. Linearized Crank–Nicolson scheme for the nonlinear time–space fractional Schrödinger equations, Journal of Computational and Applied Mathematics. 2019; 355: 218-231, DOI: https://doi.org/10.1016/j.cam.2019.01.045.

Downloads

Published

2022-06-30

How to Cite

Purwaningsih, S. and Fardela, R. (2022) “The Analysis of the Physical Quantity N Grid, v, and dt in Solving the Schrödinger Equation Using the Crank-Nicolson Method”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 12(1), pp. 1–13. doi: 10.26740/jpfa.v12n1.p1-13.

Issue

Section

Articles
Abstract views: 638 , PDF Downloads: 212