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Abstract 

Solving the Schrödinger equation may result in a wave function of a particle in a quantum system, which can afford 

the information with respect to the particle’s behavior. The Schrödinger equation is useful for examining probability 

density and determining a wave function of free particles. This research focuses on solving the Schrödinger equation 

using the Crank-Nicolson method in free particles. The Crank-Nicolson method is a method of solving partial 

differential equations in the form of the Schrodinger equation, this method is very stable and accurate in giving 

numerical results. The result indicates that probability density and the form of the wave function of free particles 

are identified by varying the v, N grid, and dt. When dt = 1, v = 1, and v = 2, and the N grid remains at a score of 

100, we acquire the same forms of the wave function and probability density. And yet, when dt = 2, v =2, and the N 

grid remains at a score of 100, the form of the wave function and probability density is constricted in one area. The 

N grid and dt are the two most affecting factors on the three variants. Using the Crank-Nicolson method, we can 

determine the wave function and probability for free particles by varying the value of N grid, dt. 
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INTRODUCTION 

Shangwha Yi [1] has made free particle wave functions as the solution of the Klein-Gordon 

equation. Bonda, et al. [2] stated that free particle cases are derived solely from the 

differentiation of the delta function. A particle’s wave function contains a small fraction of an 

antiparticle’s wave function [3]. The canonical quantization of a system of a free particle in a 
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bounded value in space, a particle in a box containing a dissipative is carried out to the Dirac 

method [4]. Quantum mechanics remains an interesting topic to study. Experts study quantum 

mechanics when encountering the indication of classical mechanics’ inability to explicate 

abundant experimental evidence as regards atomic size systems [5]. In the case of non-

relativistic quantum mechanics, the main equation to be solved is the second-order differential 

equation or known as the Schrödinger equation [6-9]. Solving the Schrödinger equation may 

result in a wave function of a particle in a quantum system, which then confers the information 

concerning the particle’s behavior [10-11]. The Schrödinger equation is useful to investigate 

energy measurement and the determination of a wave function for a free particle, a particle in a 

1D box, a simple harmonic oscillator, and diverse studies of atoms and other quantum systems 

[12-13]. The focus of this study is the probability density of Gaussian form as a time function for 

a free particle. The current research trend concerns the study of the numerical method of the 

time-dependent Schrödinger equation using the general equation of the Crank-Nicholson 

approximation [14-15]. But no analysis has been done on the physical quantities N grid, v, and 

dt which are the most influential in determining the shape of the wave function and probability 

density. The purpose of this study is to analyze the physical quantities N grid, v, and dt which 

are the most influential in determining the shape of the wave function and probability density. 

The focus study is how to perform a simulation of the probability density of a function in 

relation to the Schrödinger equation, and what parameters are significant when the variation of 

N grid, v, and dt is made. This method is accurate and efficient for solving 1D Schrödinger 

equation. The idea is advocated by Dijk and Toyama, who developed an approximation to solve 

a time-dependent Schrödinger equation numerically [16]. However, they disregard 

quantification for free particles [17]. 

Shangwha Yi [1] has made free particle wave functions as the solution of the Klein-Gordon 

equation. Bonda, et al. [2] stated that free particle cases are derived solely from the 

differentiation of the delta function. A particle’s wave function contains a small fraction of an 

antiparticle’s wave function [3]. The canonical quantization of a system of a free particle in a 

bounded value in space, a particle in a box containing a dissipative is carried out to the Dirac 

method [4]. Quantum mechanics remains an interesting topic to study. Experts study quantum 

mechanics when encountering the indication of classical mechanics’ inability to explicate 

abundant experimental evidence as regards atomic size systems [5]. In the case of non-

relativistic quantum mechanics, the main equation to be solved is the second-order differential 

equation or known as the Schrödinger equation [6-9]. Solving the Schrödinger equation may 

result in a wave function of a particle in a quantum system, which then confers the information 

concerning the particle’s behavior [10-11]. The Schrödinger equation is useful to investigate 

energy measurement and the determination of a wave function for a free particle, a particle in a 

1D box, a simple harmonic oscillator, and diverse studies of atoms and other quantum systems 

[12-13]. The focus of this study is the probability density of Gaussian form as a time function for 

a free particle. The current research trend concerns the study of the numerical method of the 

time-dependent Schrödinger equation using the general equation of the Crank-Nicholson 

approximation [14-15]. But no analysis has been done on the physical quantities N grid, v, and 

dt which are the most influential in determining the shape of the wave function and probability 

density. The purpose of this study is to analyze the physical quantities N grid, v, and dt which 

are the most influential in determining the shape of the wave function and probability density. 

The focus study is how to perform a simulation of the probability density of a function in 



Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 2021; 12(1): 1-13 

Sri Purwaningsih and Ramacos Fardela  3 

relation to the Schrödinger equation, and what parameters are significant when the variation of 

N grid, v, and dt is made. This method is accurate and efficient for solving 1D Schrödinger 

equation. The idea is advocated by Dijk and Toyama, who developed an approximation to solve 

a time-dependent Schrödinger equation numerically [16]. However, they disregard 

quantification for free particles [17]. 

Comprehending quantum mechanics is not demanding and can be carried out by observing 

free particles for the Schrödinger equation concerned [18]. Free particles, addressed in this 

research, are particles with no style influences. The potentials are so weak that they can be 

neglected, and the particles move freely [19-20]. In this research, we are solving the Schrödinger 

equation using an efficient and effective numerical method to derive an accurate result. Also, in 

this research on free particles, we are studying what the density probability is when the position 

varies, what the waveform is, and how to solve a wave function that adheres to several types of 

wave equations that delineate classical waves. Meanwhile, standing waves will be explained in 

a more detailed way using the Crack-Nicholson method. 

According to de Broglie, in regard to the wave nature of particles, only atomic or atomic 

nucleus size particles have nature as a wave, whereas the larger ones do not [21-22]. This 

phenomenon is brought about by a tiny Planck’s constant. The free particles in this research are 

in atomic size, and accordingly, the nature of their waves is observable. 

We use MATLAB to determine the numerical results as the program is equipped with some 

features, e.g., being competent in visualizing and simulating physical quantity in the free 

particles analyzed. Additionally, MATLAB has excellent numerical accuracy and an appealing 

color appearance [23-27]. Based on the background, the research examines how to solve the 

Schrödinger equation using the Crank-Nicholson method, how to perform a simulation of the 

probability density of a function in relation to the Schrödinger equation, and what parameters 

are significant when the variation of the N grid, v, and dt is made. 

 

METHOD 

The material used here is a set of laptops, in which MATLAB 2017B has been installed, to 

solve the Schrödinger equation. The method used is Crank-Nicholson, and the wave function 

  in the form of numerical iteration is [23]: 

       1,1,,  nthjxtx njnj  (1) 

As such, the Schrödinger equation will be: 
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Because the Hamiltonian operator is linear, Equation (2) will be: 
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Matrix jkH
 is the form of the iteration of the Hamiltonian operator, namely: 
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In a matrix form, the Schrödinger equation will be: 

nn H
i




 










11

                  (6) 

Equation (6) is an explicit form in solving the Schrödinger equation. The Schrödinger 

equation can also be shown by applying the Hamiltonian operator to the wave function when 

n + 1, i.e. [28]: 
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The Crank-Nicholson method is very implicit and stable and has a fair accuracy effect in 

solving the Schrödinger equation, which is laid out as follows: 
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In a matrix notation, it can be written as: 
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and can be solved into: 
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Equation (11) is the solution to the Schrödinger equation using the Crank-Nicholson 

method, which is considered the best, fairly accurate, and most stable method. 

Solving differential equations, including the Schrödinger equation, requires a preliminary 

condition that makes them solvable using numerical computation with a certain step size. In 

this condition, it is perceived that a free particle is in position 0x
 with a wave packet and an 

average momentum 00 kp 
 ( 0k

is the wavenumber). If Gaussian wave packets are used, the 
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initial wave will be: 

    2
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        (12) 

This wave function is normalized so: 
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dx

                          (13) 

Considering the Heisenberg uncertainty principle 2 px , the wave function in free 

space is: 
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With 
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, the probability density 

    2
,, txtxP 

 is:  

 
 











 










2

0

2

00

4

0

2

0 exp,






 mtpxx
txP

        (15) 

 

Equation (15) is stated in a Gaussian form as a time function. The maximum value of the 

Gaussian function can be expressed in the form of the expected value evaluation of the 

probability density function as: 

  dxtxxP ,x
                       (16) 

In a time scale, a function moves as
mtpx /x 00 

, a wave packet moves at a speed of

mp0 . The Gaussian function disperses in a time scale, and the standard deviation can be 

written as [24]: 
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RESULTS AND DISCUSSION  

To elicit the result, the running program is performed by altering the variables v = 1.00, 1.75, 

and 2.00. The choosing of these numbers is based on how quickly the convergence is achieved, 

and seeing how far the free particle is located and the resulting probability density.  Varying 

the v in the interval allows the wave function and probability density to be observed. Besides 

varying the v, varying N and dt is likewise called for to observe the wave function and 

probability density resulting. From the variation, the graphs of varied probability density and 

the forms of the wave function of free particles are then presented. The probability density of 
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free particles can be presented in either 2D or 3D graphs. To investigate the form of the wave 

function and probability density, the following variation is made. 

 

N = 50, dt = 3, and v = 1.75 

By inputting N = 50, dt = 3, and v = 1.75, the wave function of free particles and probability 

density as seen as Figure 1. 

 

Figure 1. The form of the wave function of free particles and probability density if N = 50, dt = 

3, and v = 1.75 

Besides, the 3D graph of probability density is shown in Figure 2. 

 
Figure 2. The 3D graph of probability density if N = 50, dt = 3, and v = 1.75 

 

N = 30, dt = 1, v = 2  

With N = 30, dt = 1, and v = 2, the form of the wave function of free particles and probability 

density are demonstrated in Figures 3 and 4. 
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Figure 3. The wave function of free particles and probability density if N = 30, dt = 1, and 

v = 2 

 

Figure 4. The 3D graph of probability density if N = 30, dt = 1, and v = 2 

If N = 100, dt = 1, and v = 2: 

 

Figure 5. The wave function of free particles and probability density if N = 100, dt = 1, 

and v = 2 

 

Figure 6. The 3D graph of probability density if N = 100, dt = 1, and v = 2 



Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 2021; 12(1): 1-13 

Sri Purwaningsih and Ramacos Fardela  8 

 

Figure 7. The wave function of free particles and probability density if N = 100, dt = 2, 

and v = 2 

 

Figure 8. The 3D graph of probability density if N = 100, dt = 2, and v = 2 

 

Figure 9. The wave function of free particles and probability density if N = 100, dt = 2, 

and v = 1 
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Figure 10. The 3D graph of probability density if N = 100, dt = 2, and v = 1 

 

Figure 11. The wave function of free particles and probability density if N = 100, dt = 1, 

and v = 1 

 

Figure 12. The 3D graph of probability density if N = 100, dt = 1, and v = 1 

 

From the results of this study, it can be seen in the graph obtained in Figure 1 through 
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Figure 12. The graph was obtained by varying the values of N, v and dt. Variations in the values 

of N are 30, 50 and 100, while the values of v are 1.00, 1.75, 2.00 and the values of dt are 1 and 2. 

The free particles examined here abide by de Broglie’s hypothesis of waves, that particles 

possess wave-like properties with the momentum hp   and the wave number 2k . 

The relationship between the two equations can be expressed as kp  . This equation 

constitutes the relationship between free particle momentum and de Broglie’s wavenumber. If 

the momentum of a particle is mvp  , it can be substituted into the above equations and 

becomes h

mv
k 0

. The average wave number k0 can be substituted into the list program to 

identify the form of the wave function and probability density resulted. 

This research makes several variants to investigate the form of the wave function and 

probability density resulted. Probability density can be presented in a 3D form by inputting 

mesh (p-plot) in MATLAB. The more the N grids were added, the more constricted the form of 

the wave function resulted. This exhibits a larger possibility for finding particles in that area. N 

grid = 100 produces a better form of wave function than N grid = 30. The variation of v has an 

insignificant impact on the form of the wave function and probability density resulted because 

varying v means varying the wavenumber. In this research, with v varies at 1, 1.75, and 2 and N 

grid = 100, the form of the wave function and probability density resulted are slightly different. 

When N grid = 100, dt = 1, and v = 2, the form of the wave function and probability density are 

the same. And yet, when N grid = 100, dt = 1, and v = 2, the form of the wave function and 

probability density are constricted in only one area. On the three variants, the N grid and dt are 

the two most affecting factors. Studying the probability density always of a free particle can 

always be developed, as in Olga and Vladimir’s research [29], probability representation of the 

quantum state. Crank-Nicolson method is good for solving partial differential equations [30], 

one of the numerical methods to solve a partial differential equation [31]. Crank–Nicolson 

difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space 

fractional derivative [32]. Although the application of this method is not new, it can still be used 

in studies of different focuses, as in the literature described above. Thus, a discontinuous finite 

volume element method combined with the second order Crank–Nicolson method in time 

discretization is proposed to solve the coupled non-stationary Stokes–Darcy model [33]. A 

Crank–Nicolson difference scheme is first derived for solving the nonlinear time-space 

fractional Schrödinger equation [34].  

The impact of this research in the field of quantum physics is the determination of that 

probability density and the shape of the free particle wave function by solving the Schrodinger 

equation using the Crank-Nicolson method, obtaining various graphic forms by varying the 

physical quantities that have been determined in this study. The limitation of this research is 

that it only varies certain physical quantities, especially for free particle systems. It is hoped that 

the next research can carry out on particles in one-dimensional, two-dimensional boxes and 

other quantum systems. 
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CONCLUSION 

In performing the simulation of probability density and the wave function of free particles 

solved using the Schrödinger equation, the most contributive parameters are acquired when the 

variation of N grid, v, and dt is made. The more the N grids were added, the more constricted 

the wave function’s form resulted. This exhibits a larger possibility for finding particles in that 

area. On the three variants, the N grid and the variation of dt are the two most affecting factors. 
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