Simulation of Land Movement Detection System Using Accelerometer Sensors and Fiber Optic

Authors

  • Qonitatul Hidayah Universitas Ahmad Dahlan
  • Umi Salamah Universitas Ahmad Dahlan
  • Yuda Wiges Pratama Universitas Ahmad Dahlan

DOI:

https://doi.org/10.26740/jpfa.v12n1.p24-33

Keywords:

land movement, accelerometer, fiber optic, acceleration

Abstract

Indonesia’s geographical conditions are one of the causes of land movement. This land movement can occur due to the movement of rock masses, soil, or debris material making up the slopes. The stability of a slope is influenced by several parameters such as material, soil strength, slope angle, climate, vegetation, and time. In Indonesia, land movement disasters are placed the third rank of natural disasters that occurred throughout 2021. Thus, the development of a land movement detection system is very important for monitoring land movement disasters. In this research, a land movement detection device was developed using the ADXL 335 accelerometer sensor and fiber optic. For data acquisition, Arduino Uno, LEDs, and photodetectors were used. Arduino Uno was used to convert analog signals to digital. In addition, LEDs were used as light sources, and photodetectors were used as a receiver. Changes in the output voltage due to macrobending loss are obtained when the curvature changes due to the pendulum system. The results of the study show that the average acceleration values on the x, y, and z axes of the accelerometer sensor are 0.118 g, 0.925 g, and -2.494 g. The maximum land displacement movement that can be represented by fiber optic is 4 cm. Further, the combination use of accelerometer sensors and fiber optic can show the magnitude of the force that causes displacement, the direction of land displacement, and the magnitude of the land displacement that occurs.

References

Jefriyanto W. Simulasi Monitoring Pergeseran Tanah Menggunakan Sensor LVDT (Linear Variable Differential Transformer). Saintifik. 2021; 7(1): 70–76. DOI: https://doi.org/10.31605/saintifik.v7i1.281.

Badan Nasional Penanggulangan Bencana. Geoportal Data Bencana Indonesia. Available from: https://gis.bnpb.go.id/.

Priyanto J, Subagiyo H and Madona P. Rancang Bangun Peringatan Bahaya Longsor Dan Monitoring Pergeseran Tanah Menggunakan Komunikasi Berbasis GSM. Jurnal Elektro dan Mesin Terapan. 2016; 2(1): 43–53. DOI: https://doi.org/10.35143/elementer.v2i1.37.

Sunardi, et al. Perancangan Sistem Peringatan Longsor dan Deteksi Pergeseran Tanah Menggunakan Metode Telemetri. Jurnal Penelitian Transportasi Darat. 2020; 22(2): 123-130. DOI: https://doi.org/10.25104/jptd.v22i2.1618.

Duc-Tan T, Dinh-Chinh N, Duc-Nghia T and Duc-Tuyen T. Development of a Rainfall-Triggered Landslide System Using Wireless Accelerometer Network. International Journal of Advancements in Computing Technology. 2015; 7(5): 14-24. Available from: http://eprints.uet.vnu.edu.vn/eprints/id/eprint/1750.

Dwinatara A, Suksmadana IMB, and Ch S. Simulasi Pendeteksian Tanah Longsor Menggunakan Sensor Akselerometer Tipe Mma7361L. Dielektrika. 2016; 3(2): 105–112. Available from: https://dielektrika.unram.ac.id/index.php/dielektrika/article/view/144.

Bazlina SM and Syaryadhi M. Perancangan Prototipe Sistem Peringatan Dini Bencana Longsor Berbasis Mikrokontroler Atmega328. Kitektro. 2017; 2(1): 23–28. Available from: https://jurnal.unsyiah.ac.id/kitektro/article/view/6818.

Cina A, Manzino AM and Bendea IH. Improving GNSS Landslide Monitoring with the Use of Low-Cost MEMS Accelerometers. Applied Sciences. 2019; 9(23): 5075. DOI: https://doi.org/10.3390/app9235075.

Nursuwars FMS, Kurniati NI and Hidayat MT. Accelerometer Sebagai Pendeteksi Dini Pergerakan Tanah. Setrum : Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer. 2019; 8(1): 9-17. DOI: https://doi.org/10.36055/setrum.v8i1.4110.

Schenato L, et al. Distributed Optical Fibre Sensing for Early Detection of Shallow Landslides Triggering. Scientific Reports. 2017; 7(1): 14686. DOI: https://doi.org/10.1038/s41598-017-12610-1.

Ivanov V, et al. Applicability of an Interferometric Optical Fibre Sensor for Shallow Landslide Monitoring – Experimental Tests. Engineering Geology. 2021; 28: 106128. DOI: https://doi.org/10.1016/j.enggeo.2021.106128.

Lebang AK, Arifin A and Abdullah B. Displacement Sensor Based on Glass Optical Fiber for Measuring Landslide with Various Configuration. Indonesian Physical Review. 2021; 4(3): 166–180. DOI: https://doi.org/10.29303/ipr.v4i3.124.

Zhu HH, et al. Real-Time and Multi-Physics Fiber Optic Monitoring of Landslides in Three Gorges Reservoir Area. IOP Conference Series: Earth and Environmental Science. 2021; 861(4): 042044. DOI: https://doi.org/10.1088/1755-1315/861/4/042044.

Bayuwati D, et al. Uji Kinerja Ekstensometer Serat Optik Di Laboratorium Dan Di Lereng Buatan. Jurnal Otomasi Kontrol dan Instrumentasi. 2017; 9(2): 131-140. DOI: https://doi.org/10.5614/joki.2017.9.2.6.

Bayuwati D, et al. Investigation on a Macro Bending Based-Fiber Extensometer as Displacement Sensor with Light Source Modulation for Power Supply Efficiency. AIP Conference Proceedings. 2020; 2256: 020004. DOI: https://doi.org/10.1063/5.0014754.

Yang Y, et al. A High-Resolution Dynamic Fiber-Optic Inclinometer. Sensors and Actuators, A: Physical. 2018; 283: 305–312. DOI: https://doi.org/10.1016/j.sna.2018.10.007.

Afif H, Widodo A, Rochman JPGN, and Syaifuddin F. Rancang Bangun Sistem Monitoring Pergerakan Tanah Menggunakan Metode Multi Segment Inclinometer Berbasis Accelerometer (Studi Kasus Model Lereng). Jurnal Geosaintek. 2019; 5(1): 25–30. DOI: https://doi.org/10.12962/j25023659.v5i1.4732.

Bayuwati D, et al. A Macrobending-Based Optical Fiber Inclinometer to Measure the Ground Tilt in the Depth Which Forms a Positive and Negative Angle to the Gravity Axis. Journal of Physics: Conference Series. 2019; 1191: 012003. DOI: https://doi.org/10.1088/1742-6596/1191/1/012003.

Ghazali MF and Mohamad H. Monitoring Subsurface Ground Movement Using Fibre Optic Inclinometer Sensor. IOP Conference Series: Materials Science and Engineering. 2019; 527: 012040. DOI: https://doi.org/10.1088/1757-899X/527/1/012040.

Chandra TG, et al. An Investigation on the Error Measurements of a Ratiometric-Macrobending Based Fiber Optic Inclinometer with Left and Right Angle Tilt Sensing Capability. AIP Conference Proceedings. 2020; 2256(1): 020010. DOI: https://doi.org/10.1063/5.0015147.

Zhang Y, et al. Design and Testing of Inertial System for Landslide Displacement Distribution Measurement. Sensors. 2020; 20(24): 7154. DOI: https://doi.org/10.3390/s20247154.

Artha OO, Rahmadya B, and Putri RE. Sistem Peringatan Dini Bencana Longsor Menggunakan Sensor Accelerometer Dan Sensor Kelembabapan Tanah Berbasis Android. Journal of Information Technology and Computer Engineering. 2018; 2(02): 14–20. DOI: https://doi.org/10.25077/jitce.2.02.14-20.2018.

Budiman F, et al. Landslide Monitoring System Based on Water Adsorption Rate Utilizing Humidity, Accelerometer, and Temperature Sensors. Jurnal Teknologi dan Sistem Komputer. 2020; 8(4): 255–262. DOI: https://doi.org/10.14710/jtsiskom.2020.13591.

Priyadi I, Hadi F, Pranata YS and Razali MR. Rancangan Dan Implementasi Sistem Deteksi Longsor Berbasis SMS Dan Progressive Web Apps. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika. 2022; 10(1): 243-258. DOI: https://doi.org/10.26760/elkomika.v10i1.243.

Arif NAAM, Berhauddin DD, and Ehsan AA. Design Parameters of Fiber-Optic Bend for Sensing Applications. International Journal of Nanoelectronics and Materials. 2020; 13(Special Issue): 107-112. Available from: https://ijneam.unimap.edu.my/images/PDF/Special%20Isssue%20IJNeaM%20(Disember%202020)/Vol_13_SI_Dec2020_107-112.pdf.

Ćmielewski K, et al. Accuracy and Functional Assessment of an Original Low-Cost Fibre-Based Inclinometer Designed for Structural Monitoring. Open Geosciences. 2020; 12(1): 1052–1059. DOI: https://doi.org/10.1515/geo-2020-0171.

Iwaniec M, et al. Development of Vibration Spectrum Analyzer Using the Raspberry Pi Microcomputer and 3-Axis Digital MEMS Accelerometer ADXL345. 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH). 2017; 25-29. DOI: https://doi.org/10.1109/MEMSTECH.2017.7937525.

Ardhi CK, Murti MA and Nugraha R. Perancangan Alat Pendeteksi Gempa Menggunakan Sensor Accelerometer Dan Sensor Getar. eProceedings of Engineering. 2018; 5(3): 4019–4027. Available from: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/8134.

Treffers C and van Wietmarschen L. Position and Orientation Determination of a Probe with Use of the IMU MPU9250 and a ATmega328 Microcontroller. Bacelor Thesis. Netherlands: TU Delft; 2016. Available from: http://resolver.tudelft.nl/uuid:d6ad6711-e600-40dd-b399-9f81f0b67d6f.

Hutasoit EY, Dewi IK, and Farid F. Identifikasi Percepatan Tanah Maksimum Dan Intensitas Gempa Bumi Di Sumatra Barat Menggunakan Metode Gutenberg-Richter. Jurnal Geocelebes. 2021; 5(2): 144–158. DOI: https://doi.org/10.20956/geocelebes.v5i2.14056.

Huang H, Pan J-S, Tseng Y-M, Fang W, and Shih R-M. Development of Optical Fiber Stress Sensor Based on OTDR. Smart Innovation, Systems and Technologies. 2018; 82: 215–222. DOI: https://doi.org/10.1007/978-3-319-63859-1_27.

Downloads

Published

2022-06-30

How to Cite

Hidayah, Q. ., Salamah, U. and Pratama, Y. W. . . (2022) “Simulation of Land Movement Detection System Using Accelerometer Sensors and Fiber Optic”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 12(1), pp. 24–33. doi: 10.26740/jpfa.v12n1.p24-33.

Issue

Section

Articles
Abstract views: 323 , PDF Downloads: 329