Comparison of Bright Band Radar from GPM and MRR Observation in West Sumatera

Authors

  • Ravidho Ramadhan Universitas Andalas
  • Marzuki Marzuki Universitas Andalas http://orcid.org/0000-0003-0266-812X
  • Mutya Vonnisa Universitas Andalas
  • Harmadi Harmadi Universitas Andalas
  • Hiroyuki Hashiguchi Kyoto University
  • Toyoshi Shimomai Shimane University

DOI:

https://doi.org/10.26740/jpfa.v11n1.p50-62

Keywords:

Bright Band, GPM, MRR, diurnal variation, seasonal variation.

Abstract

The Bright band (BB) observation can be used as an indication of the melting layer height. Measurement of BB from Normal Scan (NS) on Global Precipitation Measurement (GPM) had been compared with Micro Rain Radar (MRR), which is installed in Kototabang, West Sumatera (0.23° S; 100.32°E; 865 m above sea level). The GPM data were collected from December 2014 to June 2018 and compared with MRR observation from January 2012 to August 2016. The BB values from these instruments were compared with those recommended by the International Telecommunication Union Recommendation (ITU-R) P.839. The BB from GPM and MRR showed slightly diurnal and seasonal variations. BB observations from GPM and MRR show good agreement with slight diurnal and seasonal variations differences. BB observations are more similar when the intensity of solar radiation is lower, i.e., at night (18.00-24.00 LT) until early morning (00.00-06.00 LT). Furthermore, MRR showed a slight bimodal pattern in the seasonal variation, while GPM did not. Thus, the seasonal variation in the observation of both instruments is different. The most significant difference from the seasonal variation was observed in the summer season (June-August (JJA)). The mean BB of the two instruments is lower than the Freezing Height Level (FHL) value calculated from the ITU-R model. However, many BB from the two instruments (>36 %) have a BB altitude higher than FHL. Thus, the constant assumption of FHL in West Sumatera for the rain attenuation estimation of microwaves may not be appropriate.

Author Biographies

Ravidho Ramadhan, Universitas Andalas

Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia

Marzuki Marzuki, Universitas Andalas

Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia

Mutya Vonnisa, Universitas Andalas

Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia

Harmadi Harmadi, Universitas Andalas

Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Indonesia

Hiroyuki Hashiguchi, Kyoto University

Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Japan

Toyoshi Shimomai, Shimane University

Remote Sensing Laboratory, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan

References

Fabry F and Zewadzki I. Long-Term Radar Observation of the Melting Layer of Precipitation an Their Interpretation. Journal of the Atmospheric Science. 1995; 52(7): 838-851. DOI: https://doi.org/10.1175/1520-0469(1995)052%3C0838:LTROOT%3E2.0.CO;2.

White AB, Gottas DJ, Stream ET, Ralph FM, and Neiman PJ. An Automated Bright Band Height Detection Algorithm for Use with Doppler Radar Spectral Moment. Journal of Atmospheric Oceanic Technology. 2002; 19(5): 687-697. DOI: https://doi.org/10.1175/1520-0426(2002)019%3C0687:AABHDA%3E2.0.CO;2.

Thurai M, Deguchi E, Iguchi T, and Okamoto KI. Freezing Height Distribution in the Tropics. International Journal of Satellite Communications and Networking. 2003; 21(6): 533-545. DOI: https://doi.org/10.1002/sat.768.

Uijlenhoet R and Pomeroy JH. Raindrop Size Distribution and Radar Reflectivity? Rain Rate Relationship for Radar Hydrology. European Geoscience Union. 2001; 5(4): 615-628. DOI: https://doi.org/10.5194/hess-5-615-2001.

Chakravarty K and Maitra A. Rain Attenuation Studies Over an Earth–Space Path at a Tropical Location. Journal of Atmospheric and Solar-Terrestrial Physics. 2010; 72(1): 135-138.DOI: https://doi.org/10.1016/j.jastp.2009.10.018.

Carlin JT and Ryzhkov AV. Estimation of Melting-Layer Cooling Rate from Dual-Polarization Radar: Spectral Bin Model Simulations. Journal of Applied Meteorology and Climatology. 2019; 58(7): 1485-1508. DOI: https://doi.org/10.1175/JAMC-D-18-0343.1.

Wolfensberger D, Scipion D, and Berne A. Detection and Characterization of the Melting Layer Based on Polarimetric Radar Scans. Quarterly Journal of the Royal Meteorological Society. 2016; 142(1): 108-124. DOI: https://doi.org/10.1002/qj.2672.

Cha JW, Chang KH, Yum SS, and Choi YJ. Comparison of the Bright Band Characteristics Measured by Micro Rain Radar (MRR) at a Mountain and a Coastal Site in South Korea. Advances in Atmospheric Sciences. 2009; 26(2): 211-221. DOI: https://doi.org/10.1007/s00376-009-0211-0.

Olurotimi EO, Sokoya O, Ojo JS, and Owolawi PA. Observation of Bright-Band Height Data from TRMM-PR for Satellite Communication in South Africa. Journal of Atmospheric and Solar-Terrestrial Physics. 2017; 160: 24-33. DOI: https://doi.org/10.1016/j.jastp.2017.05.004.

Carlin JT and Rhyzkov AV. Estimation of Melting-Layer Cooling Rate from Dual-Polarized Radar: Spectral Bin Model Simulations. Journal of Applied Meteorology and Climatology. 2019; 58(7): 1485-1508. DOI: https://doi.org/10.1175/JAMC-D-18-0343.1.

Awaka J, Iguchi T, and Okamoto K. TRMM PR Standard Algorithm 2A23 and its Performance on Bright Band Detection. Journal of the Meteorological Society of Japan. 2009; 87A: 31-52. DOI: https://doi.org/10.2151/jmsj.87A.31.

Yuan F, Lee YH, Meng YS, Manandhar S, and Ong JT. High-Resolution ITU-R Cloud Attenuation Model for Satellite Communications in Tropical Region. IEEE Transactions on Antennas and Propagation. 2019; 67(9): 6115-6122. DOI: https://doi.org/10.1109/TAP.2019.2916746.

Wang F, Liu H, Dong W, Zhang Y, and Meng Q. Characteristics of Lightning Flashes Associated with the Charge Layer Near the 0 C Isotherm in the Stratiform Region of Mesoscale Convective Systems. Journal of Geophysical Research: Atmospheres. 2018; 123(17): 9524-9541. DOI: https://doi.org/10.1029/2018JD028569.

Ramachandran V and Kumar V. Modified Rain Attenuation Model for Tropical Regions for Ku-Band Signals. International Journal of Satellite Communication and Networking. 2007; 25(1): 53-67. DOI: https://doi.org/10.1002/sat.846.

Dwianda R and Marzuki. Karakteristik melting layer di Indonesia berdasarkan radar hujan yang terpasang di satelit TRMM. Jurnal Ilmu Fisika. 2018; 10: 73-82. DOI: https://doi.org/10.25077/jif.10.2.73-82.2018.

Marzuki, Hashiguchi H, and Vonnisa M, Harmadi, and Muzirwan. Long-Term Change in Rainfall Rate and Melting Layer Height in Indonesia. Progress in Electromagnetics Research Symposium. 2018; 1154-1158. DOI: https://doi.org/10.23919/PIERS.2018.8597606.

Awaka J, Le M, Chandrasekar V, Yoshida N, Higashiuwatoko T, Kubota T, and Iguchi T. Rain Type Classification Algorithm Module For GPM Dual-Frequency Precipitation Radar. Journal of Atmospheric and Oceanic Technology. 2016; 33(9): 1887-1898. DOI: https://doi.org/10.1175/JTECH-D-16-0016.1.

Gong J and Wu D. Microphysical Properties of Frozen Particles Inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) Polarimetric Measurements. Atmospheric Physics and Chemistry. 2017; 17(4): 2741-2757. DOI: https://doi.org/10.5194/acp-17-2741-2017.

Casella D, Panegrossi G, Sanò P, Marra AC, Dietrich S, Johnson BT, and Kulie MS. Evaluation of the GPM-DPR Snowfall Detection Capability: Comparison with CloudSat-CPR. Atmospheric Research. 2017; 197: 64-75. DOI: https://doi.org/10.1016/j.atmosres.2017.06.018.

Kotsuki S, Terasaki K, and Miyoshi T. GPM/DPR Precipitation Compared with a 3.5-km-Resolution NICAM Simulation. Sola. 2014; 10: 204-209. DOI: https://doi.org/10.2151/sola.2014-043.

Kobayashi K, Shige S, and Yamamoto MK. Vertical Gradient of Stratiform Radar Reflectivity Below the Bright Band from the Tropics to the Extratropical Latitudes Seen by GPM. Quarterly Journal of the Royal Meteorological Society. 2018; 144(S1): 165-175. DOI: https://doi.org/10.1002/qj.3271.

Rico‐Ramirez MA and Cluckie ID. Bright‐Band Detection from Radar Vertical Reflectivity Profiles. International Journal of Remote Sensing. 2007; 28(18): 4013-4025. DOI: https://doi.org/10.1080/01431160601047797.

Sumesh RK, Resmi EA, Unnikrishnan CK, Jash D, Sreekanth TS, Resmi MM, Rajeevan K, Nita S, and Ramachandran KK. Microphysical Aspects of Tropical Rainfall during Bright Band Events at Mid and High-Altitude Regions over Southern Western Ghats, India. Atmospheric Research. 2019; 227: 178-197. DOI: https://doi.org/10.1016/j.atmosres.2019.05.002.

Jash D, Resmi EA, Unnikrishnan CK, Sumesh RK, Sreekanth TS, Sukumar N, and Ramachandran KK. Variation in Rain Drop Size Distribution and Rain Integral Parameters during Southwest Monsoon Over a Tropical Station: An Inter-Comparison of Disdrometer and Micro Rain Radar. Atmospheric Research. 2019; 217: 24-36. DOI: https://doi.org/10.1016/j.atmosres.2018.10.014.

Marzuki, Hashiguchi H, Shimomai T, Rahayu I, and Vonnisa M. Performance Evaluation of Micro Rain Radar Over Sumatra through Comparison with Disdrometer and Wind Profiler. Progress In Electromagnetics Research. 2016; 50: 33-46. DOI: https://doi.org/10.2528/PIERM16072808.

Wang H, Lei H, and Yang J. Microphysical Processes of a Stratiform Precipitation Event Over Eastern China: Analysis Using Micro Rain Radar Data. Advances in Atmospheric Sciences. 2017; 34(12): 1472-1482. DOI: https://doi.org/10.1007/s00376-017-7005-6.

Marzuki, Kozu T, Shimomai T, Randeu WL, Hashiguchi H, and Shibagaki Y. Diurnal Variation of Rain Attenuation Obtained from Measurement of Raindrop Size Distribution in Equatorial Indonesia. IEEE Transactions on Antennas and Propagation. 2009; 57(4): 1191-1196. DOI: https://doi.org/10.1109/TAP.2009.2015812.

Marzuki, Nauval F, and Hashiguchi H. Regional and Diurnal Variation of Rain Attenuation Obtained from Measurement of Raindrop Size Distribution Over Indonesia at Ku, Ka and W bands. Progress in Electromagnetics Research. 2017; 57: 25-34. DOI: https://doi.org/10.2528/PIERM17030503.

Ramadhan R, Marzuki, Vonnisa M, Harmadi, Hashiguchi H, and Shimomai T. Seasonal Variation in the Vertical Profile of the Raindrop Size Distribution for Stratiform Rain as Inferred From Micro Rain Radar Observation at Kototabang. AIP Conference Proceeding. 2020; 2221(1): 090002. DOI: https://doi.org/10.1063/5.0003181.

Ramadhan R, Marzuki, Vonnisa M, Harmadi, Hashiguchi H, and Shimomai T. Diurnal Variation in the Vertical Profile of the Raindrop Size Distribution for Stratiform Rain as Inferred from Micro Rain Radar Observations in Sumatra. Advances in Atmospheric Sciences. 2020; 37(8), 832-846. DOI: https://doi.org/10.1007/s00376-020-9176-9.

Peters G, Fischer B, and Andersson T. Rain Observation with a Vertically Looking Micro Rain Radar (MRR). Boreal Environment Research. 2002; 7(4): 353-362. Available from: http://sensovant.com/productos/pdf/meteorologia/pluviometria-hielo/sensovant-lluvia-observaciones-con-radar.pdf.

Gao J, Tang G, and Hong Y. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling. Remote Sensing. 2017; 9(11): 1142. DOI: https://doi.org/10.3390/rs9111142.

Suzuki K, Kamamoto R, Nakagawa K, Nonaka M, Shinoda T, Ohigashi T, Minami Y, Kubo M, and Kaneko Y. Ground Validation of GPM DPR Precipitation Type Classification Algorithm by Precipitation Particle Measurements in Winter. SOLA. 2019; 15: 94-98. DOI: https://doi.org/10.2151/sola.2019-018.

Seto S and Iguchi T. Intercomparison of Attenuation Correction Methods for the GPM Dual-Frequency Precipitation Radar. Journal Atmospheric and Oceanic Technology. 2015; 32(5): 915-926. DOI: https://doi.org/10.1175/JTECH-D-14-00065.1.

Le M and Chandrasekar V. Hydrometeor Profile Characterization Method for Dual-Frequency Precipitation Radar on Board the GPM. IEEE Transactions on Geoscience Remote Sensing. 2013a; 51(6): 3648-3658. DOI: https://doi.org/10.1109/TGRS.2012.2224352.

Le M and Chandrasekar V. Precipitation Type Classification Method for Dual-Frequency Radar (DPR) Precipitation Radar on Board the GPM. IEEE Transactions on Geoscience Remote Sensing. 2013b; 51(3): 1784-1790. DOI: https://doi.org/10.1109/TGRS.2012.2205698.

Williams E and Renno N. An Analysis of the Conditional Instability of the Tropical Atmosphere. Monthly Weather Review. 1993; 121(1): 21-36. DOI: https://doi.org/10.1175/1520-0493(1993)121%3C0021:AAOTCI%3E2.0.CO;2.

Mishin VV and Tomozov VM. Kelvin–Helmholtz Instability in the Solar Atmosphere, Solar Wind and Geomagnetosphere. Solar Physics. 2016; 291(11): 3165-3184. DOI: https://doi.org/10.1007/s11207-016-0891-4.

Ramadhan R and Marzuki M. Distribusi Arah Vertikal Butiran Hujan dari Hujan Stratiform di Kototabang dari Pengamatan Micro Rain Radar (MRR). Jurnal Fisika Unand. 2019; 8(3): 252-259. DOI: https://doi.org/10.25077/jfu.8.3.252-259.2019.

Kozu T, Reddy K K, Mori S, Thurai M, Ong J T, Rao D N, and Shimomai T. Seasonal and Diurnal Variations of Raindrop Size Distribution in Asian Monsoon Region. Journal of the Meteorological Society of Japan. Ser. II. 2006; 84A: 195-209. DOI: https://doi.org/10.2151/jmsj.84A.195.

Chakraborty R, Basha G, and Ratnam MV. Diurnal and Long-Term Variation of Instability Indices Over a Tropical Region in India. Atmospheric Research. 2018; 207: 145-154. DOI: https://doi.org/10.1016/j.atmosres.2018.03.012.

Tangang F, Salimun E, Aldrian E, Sopaheluwakan A, and Juneng L. ENSO Modulation of Seasonal Rainfall and Extremes in Indonesia. Climate Dynamics. 2018; 51 (7-8): 2559-2580. DOI: https://doi.org/10.1007/s00382-017-4028-8.

Gao J, Tang G, and Hong Y. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling. Remote Sens. 2017; 9(11): 1142. DOI: https://doi.org/10.3390/rs9111142.

Marzuki, Hashiguchi H, Vonnisa, M. Harmadi, and Katsumata M. Determination of Intraseasonal Variation of Precipitation Microphysics in the Southern Indian Ocean from Joss–Waldvogel Disdrometer Observation during the CINDY Field Campaign. Advance in Atmospheric Sciences. 2018; 35: 1415–1427. DOI: https://doi.org/10.1007/s00376-018-8026-5.

Downloads

Published

2021-07-23 — Updated on 2021-10-09

Versions

How to Cite

Ramadhan, R., Marzuki, M., Vonnisa, M., Harmadi, H., Hashiguchi, H. and Shimomai, T. (2021) “Comparison of Bright Band Radar from GPM and MRR Observation in West Sumatera”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 11(1), pp. 50–62. doi: 10.26740/jpfa.v11n1.p50-62.

Issue

Section

Articles
Abstract views: 377 , PDF Downloads: 11