Analysis of Stress Drop Variations in Fault and Subduction Zones of Maluku and Halmahera Earthquakes in 2019
DOI:
https://doi.org/10.26740/jpfa.v9n2.p152-162Keywords:
stress drop, fault, source spectrum, Nelder Mead Simplex methodAbstract
The amount of stress released by an earthquake can be calculated with a stress drop, the stress ratio before and after an earthquake where the stress accumulated in a fault or a subduction zone is immediately released during an earthquake. The purpose of this research is to calculate the amount of stress drop in faults and subduction in Maluku and Halmahera and their variations and relate them to the geological conditions in the area so that the tectonic characteristics in the area can be identified. This research employed mathematical analysis and the Nelder Mead Simplex nonlinear inversion methods. The results show that Maluku and Halmahera are the area with complex tectonic conditions and large earthquake impacts. The Maluku sea earthquake generated a stress drop of 0.81 MPa with a reverse fault mechanism in the zone of subduction, while for the Halmahera earthquake the stress drop value was 52.72 MPa, a typical strike-slip mechanism in the fault zone. It can be concluded that there is a difference in the stress drop between the subduction and fault zones; the stress drop in the fault was greater than that in the subduction zone due to different rock structure and faulting mechanisms as well as differences in the move slip rate that plays a role in the process of holding out the stress on a rock. This information is very important to know the amount of pressure released from the earthquake which has a very large impact as part of disaster mitigation measures.
References
Allmann BP and Shearer PM. Global Variations Of Stress Drop For Moderate To Large Earthquakes. Journal of Geophysical Research: Solid Earth. 2009; 114(B1): B01310. DOI: https://doi.org/10.1029/2008JB005821.
Badan Meteorologi Klimatologi dan Geofisika. Gempabumi Tektonik M 7,7 Mengguncang Kabupaten Maluku Tenggara Barat, Tidak Berpotensi Tsunami. Website. Available from: https://www.bmkg.go.id/press-release/?p=gempabumi-tektonik-m-77-mengguncang-kabupaten-maluku-tenggara-barat-tidak-berpotensi-tsunami&tag=press-release&lang=ID [accessed 20 July 2019].
Hutagaol S. Ini Analisis BMKG Terkait Gempa M 7,2 yang Guncang Maluku Utara. Website. Available from: https://news.okezone.com/read/2019/07/14/340/2078751/ini-analisis-bmkg-terkait-gempa-m-7-2-yang-guncang-maluku-utara [accessed 20 July 2019].
Hall R and Wilson MEJ. Neogene Suture in Eastern Indonesia. Journal of Asian Earth Sciences. 2000; 18(6): 781-808. DOI: https://doi.org/10.1016/S1367-9120(00)00040-7.
Hillis RR, and Müller RD. Evolution and Dynamics of the Australian Plate. Geological Society of America. 2003: 372-377. DOI: https://doi.org/10.1130/0-8137-2372-8.1.
Tim Pusat Studi Gempa Nasional. Peta Sumber dan Bahaya Gempa bumi Indonesia Tahun 2017. Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat; 2017. Available from: http://geotek.lipi.go.id/wp-content/uploads/2018/02/BUKU-PETA-GEMPA-2017.pdf.
Bemmelen RW. The Geology of Indonesia. The Hauge: Martinus Nijhoff; 1949. Available from:
https://www.worldcat.org/title/geology-of-indonesia/oclc/624477880.
Bock Y, Prawirodirdjo L, Genrich JF, Stevens CW, McCaffrey R, Subarya, Puntodewo SSO, and Calais E. Crustal Motion in Indonesia from Global Positioning System Measurements. Journal of Geophysical Research: Solid Earth. 2003; 108(B8): 2367. DOI: https://doi.org/10.1029/2001JB000324.
CNN Indonesia. Gempa Maluku Utara, 4 Korban Tewas dan Ribuan Orang Mengungsi. Website Available from: https://www.cnnindonesia.com/nasional/20190716185132-20-412698/gempa-maluku-utara-4-korban-tewas-dan-ribuan-orang-mengungsi. [accessed 20 July 2019].
Incorporated Research Institutions for Seismology. Wilber 3. Website. Available from: https://ds.iris.edu/wilber3/find_event. [accessed 20 July 2019].
Bora DK, Baruah S, Biswas R, and Gogoi NK. Estimation of Source Parameters of Local Earthquakes Originated in Shillong Plateau and its Adjoining Region of Northeastern India. Bulletin of the Seismological Society of America. 2016; 103(1): 437446. DOI: http://dx.doi.org/10.1785/0120120095.
Brune JN. Tectonic Stress and the Spectra of Seismik Shear Waves from Earthquake. Journal of Geophysical Research. 1970; 75(26): 4997-5009. DOI:
https://doi.org/10.1029/JB075i026p04997.
Cramer CH. Brune Stress Parameter Estimates for the 2016 Mw 5.8 Pawnee and Other Oklahoma Earthquakes. Seismology Research Letter. 2017; 88(4): 10051016. DOI: https://doi.org/10.1785/0220160224.
Havskov J and Ottemoler L. Routine Data Processing in Earthquake Seismology (Department of Earth Science). Norway: University of Bergen; 2010. Available from: https://link.springer.com/book/10.1007/978-90-481-8697-6.
Grandis H. Pengantar Pemodelan Inversi Geofisika. Jakarta: Himpunan Ahli Geofisika Indonesia; 2009
Gunawan I. Earthquake Source Properties and Site Response for Indonesia Strong-Motion Network. Thesis. Unpublished. Canberra: Australian National University; 2012.
Hartzeell SH. Site Respone Estimation from Earthquake Data. Bulletin of the Seismological Society of America. 1992; 82(6). 2308-2327. Available from: https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/82/6/2308/119631.
Hartzell S, Mendoza C, and Zeng Y. Rupture Model of the 2011 Virginia, Earthquake from Teleseismic and Regional Waveforms. Geophysical Research Letters. 2013; 40(21): 56655670. DOI: https://doi.org/10.1002/2013GL057880.
Sativa O. Estimasi Site Effect dari Data Accelerogram Borehole dan Accelerogram Permukaan Undergraduate Thesis. Unpublished. Bandung: Bandung Institute of Technology; 2013.
Moraglio A and Johnson CG. Geometric Generalization of the Nelder-Mead Algorithm. Evolutionary Computation in Combinatorial Optimization (EvoCOP). 2010: 6022; 190-201. DOI: https://doi.org/10.1007/978-3-642-12139-5_17.
McGarr A. Maximum Magnitude Earthquakes Induced by Fluid Injection. Journal of Geophysical Research: Solid Earth. 2014; 119(2): 10081019. DOI: https://doi.org/10.1002/2013JB010597.
Trugman DT, Dougherty SL, Cochran ES, and Shearer PM. Source Spectral Properties of Small to Moderate Earthquakes in Southern Kansas. Journal of Geophysical Research: Solid Earth. 2017; 122(10): 8021-8034. DOI: https://doi.org/10.1002/2017JB014649.
Beyreuther MR, Barsch L, Krischer T, Megies T, Behr Y, and Wassermann J. ObsPy: A Python Toolbox for Seismology. Seismology Research Letters. 2010; 81(3): 530-533. DOI: https://doi.org/10.1785/gssrl.81.3.530.
Abercrombie RE. Stress Drops of Repeating Earthquakes on The San Andreas Fault at Parkfield. Geophysical Research Letters. 2014; 41(24): 8784-8791. DOI: https://doi.org/10.1002/2014GL062079.
Garcia-Aristizabal A, Caciagli M, and Selva J. Considering Uncertainties in The Determination of Earthquake Source Parameters from Seismic Spectra. Geophysical Journal International. 2016; 207(2): 691701. DOI: https://doi.org/10.1093/gji/ggw303.
Yuliatmoko RS, Afnimar, and Gunawan I. Stress Drop Variation di Sumatra. Jurnal Geofisika. 2017; 15(3): 10-16. DOI: http://dx.doi.org/10.36435/jgf.v15i1.14.
Allmann BP and Shearer PM. Spatial and Temporal Stress Drop Variations in Small Earthquakes Near Parkfield, California. Journal of Geophysical Research: Solid Earth. 2007; 112(B4): B04305. DOI: https://doi.org/10.1029/2006JB004395.
Natawidjaja DH and Triyoso W. The Sumatran Fault Zone from Source to Hazard. Journal of Earthquake and Tsunami. 2007; 1(1): 21-47. DOI: https://doi.org/10.1142/S1793431107000031.
Goebel THW, Hauksson E, Shearer PM, and Apuero JP. Stress-Drop Heterogeneity within Tectonically Complex Regions: a Case Study of San Gorgonio Pass, Southern California. Geophysical Journal International. 2015; 202(1): 514528. DOI: https://doi.org/10.1093/gji/ggv160.
Wu Q, Chapman M, and Chen X. Stress-Drop Variations of Induced Earthquake in Oklahoma. Bulletin of the Seismological Society of America. 2018; 108(3A): 11071123. DOI:
https://doi.org/10.1785/0120170335
Downloads
Published
How to Cite
Issue
Section
License
Author(s) who wish to publish with this journal should agree to the following terms:
- Author(s) retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 4.0 License (CC BY-NC) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal for noncommercial purposes.
- Author(s) are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
The publisher publish and distribute the Article with the copyright notice to the JPFA with the article license CC-BY-NC 4.0.
![](https://journal.unesa.ac.id/public/site/grafik.png)
![](https://journal.unesa.ac.id/public/site/pdf.png)