Sensitivity Approach of Optical Sensors of Cholesterol Detection through Gaussian Beam and Quasi-Gaussian Beam

Authors

  • Mohammad Budiyanto Universitas Negeri Surabaya
  • Mohamad Yasin Universitas Airlangga
  • Sulaiman Wadi Harun University of Malaya

DOI:

https://doi.org/10.26740/jpfa.v9n1.p22-31

Keywords:

sensitivity, Gaussian beam, Quasi Gaussian beam, cholesterol

Abstract

Sensitivity is the comparison result between changes in output signal intensity and changes in input signal shift sensor. The purpose of this study was to analyze the sensitivity of fiber optic sensors using mathematical analysis through the Gaussian beam approach and quasi-Gaussian beam compared with the sensitivity of the optical sensor experimental results so that it can find the correct approach of sensitivity values between theory and experiment. The research method used mathematical analysis and experimental methods and mathematical descriptions for the description of the bundle optical fiber used in the experiment until the sensitivity equation is obtained. The results of the mathematical analysis of the Gaussian beam sensitivity values obtained of S = 0.004 mV ppm-1 and the sensitivity of quasi-Gaussian beam of S = 0.08 mV ppm-1. The results of the sensitivity of experimentally obtained S = 0.11 mV ppm-1. Based on the results of mathematical, experimental analysis, and sensor performance, sensitivity through the flat mirror reflection field, it can be concluded that the sensitivity of the optical fiber sensor tends to approach through the quasi-Gaussian beam approach to determine cholesterol concentration.

Author Biographies

Mohammad Budiyanto, Universitas Negeri Surabaya

Department of Natural Sciences, Faculty of Mathematics and Natural Sciences

Mohamad Yasin, Universitas Airlangga

Department of Physics, Faculty of Sciences and Technology

Sulaiman Wadi Harun, University of Malaya

Photonics Engineering Laboratory, Department of Electrical Engineering

References

Hida N, Bidin N, Abdullah M, and Yasin M. Fiber Optic Displacement Sensor for Honey Purity Detection in Distilled Water. Optoelectronics and Advanced Materials. 2013; 74(8): 565568. DOI: https://doi.org/10.11113/jt.v74.4711.

Yasin M, Ahmad H, Thambiratnam K, Jasim AA, Phang SS, and Harun SW. Design of Multimode Tapered Fibre Sensor for Glucose Detection. Optoelectronics and Advanced Materials. 2013; 7(5-6): 371-376. Available from: https://www.researchgate.net/publication/264768406_Design_of_multimode_tapered_fibre_sensor_for_glucose_detection.

Rahman HA, Harun SW, Yasin M, and Ahmad H. Fiber Optic Salinity Sensor Using Fiber Optic Displacement Measurement with
Flat and Concave Mirror. IEEE Journal of Selected Topics in Quantum Electronics. 2012; 18(5) :1529-1533. DOI: http://dx.doi.org/10.1109/JSTQE.2011.2159705.

Budiyanto M, Suhariningsih, and Yasin M. Cholesterol Detection Using Optical Fiber Sensor Based On Intensity Modulation.
Journal of Physics : Conference Series. 2017; 853: 012008. DOI: https://doi.org/10.1088/1742-6596/853/1/012008.

Budiyanto M, Suhariningsih, and Yasin M. Optical Fiber Displacement Sensor Using Concave Mirror for Cholesterol Detection. IEEE Proceeding. 2017; 150-153. DOI: https://doi.org/10.1109/ISSIMM.2017.8124281.

Budiyanto M, Suhariningsih, and Yasin M. Potency of Sensor Displacement Detection of Cholesterol Concentration Using Flat Mirror as Media for Learning Waves and Optics. Journal of Physics : Conference Series. 2018; 1006: 012007. DOI: http://doi.org/10.1088/1742-6596/1006/1/012007.

Ruechaa N, Siangproh W, and Chailapakul O. A Fast and Highly Sensitive Detection of Cholesterol Using Polymer Microfluidic Devices and Amperometric System. Talanta. 2011; 84(5): 13231328. DOI: https://doi.org/10.1016/j.talanta.2011.02.040.

Jaime J, Rangel G, Munos-Bonilla A, Mayoral A, and Herrasti P. Magnetite as a Platform Material in the Detection of
Glucose, Ethanol and Cholesterol. Journal Sensors and Actuators B: Chemical. 2017; 238: 693-701. DOI: https://doi.org/10.1016/j.snb.2016.07.059.

Kozitsina AN, Okhokhonin AV, and Matern AI. Amperometric Detection of Cholesterol Using Cobalt (II) Chloride as an
Electrocatalyst in Aprotic Media. Journal of Electroanalytical Chemistry. 2016; 772: 8995. DOI: https://doi.org/10.1016/j.jelechem.2016.04.029.

Nantaphola S, Chailapakul O, and Siangproh W. Sensitive and Selective Electrochemical Sensor Using Silver Nanoparticles Modified Glassy Carbon Electrode for Determination of
Cholesterol in Bovine Serum. Sensors and Actuators B: Chemical. 2015; 207(A):193198. DOI: https://doi.org/10.1016/j.snb.2014.10.041.

Ji J, Zhou Z, Zhao X, Sun J, and Sun X. Electrochemical Sensor Based on Molecularly Imprintedfilm At Au Nanoparticles-Carbon Nanotubes Modified Electrode for Determination of Cholesterol.
Biosensors and Bioelectronics. 2015; 66: 590595. DOI: https://doi.org/10.1016/j.bios.2014.12.014.

Cai X, Gao X, Wang L, Wu Q, and Lin X. A Layer-By-Layer Assembled and Carbon Nanotubes/Gold Nanoparticles-Based
Bienzyme Biosensor for Cholesterol Detection.Sensors and Actuators. 2013; 181: 575-583. DOI: https://doi.org/10.1016/j.snb.2013.02.050.

Ahmadalinezhad A and Chen A. High-Performance Electrochemical
Biosensor for the Detection of Total Cholesterol. Biosensors and Bioelectronics. 2011; 26(11): 4508-4513. DOI: https://doi.org/10.1016/j.bios.2011.05.011.

Soylemez S, Udum YA, Kesik M, Hizliates CG, Ergun Y, and Toppare L. Electrochemical and Optical Properties
of a Conducting Polymer and Its Use in a Novel Biosensor for the
Detection of Cholesterol. Sensors and Actuators. 2015; 212: 425433. DOI: https://doi.org/10.1016/j.snb.2015.02.045.

Raj V, Jaime R, Astruc D, and Sreenivasan K. Detection of Cholesterol by Digitonin Conjugated Gold Nanoparticles. Biosensors and Bioelectronics. 2011; 27(1): 197-200. DOI: https://doi.org/10.1016/j.bios.2011.06.015.

Wei-Hung C, Po-Yen Chen, Po-Chin Nien, and Kuo-Chuan Ho. Amperometric Detection of Cholesterol Using an Indirect Electrochemical Oxidation Method. Steroids. 2011; 76(14): 15351540. DOI: https://doi.org/10.1016/j.steroids.2011.09.003.

Faria JB. A Theoretical Analysis of The Bifurcated Fiber Bundle Displacement Sensor. IEEE Transactions on Instrumentation and Measurement. 1998; 47: 742-747. DOI: https://doi.org/10.1109/19.744340.

Sastikumar D, Gobi G, and Renganathan B. Determination of The Thicness of a Transparent Plate Using a Reflective Fiber
Optic Displacement Sensor. Optics & Laser Technology. 2010; 42(6): 911 917. DOI: https://doi.org/10.1016/j.optlastec.2010.01.008.

Swatland HJ. Effect of Connective Tissue on the Shape of Reflectance Spectra Obtained With A Fibre-Optic Fat-Depth Probe in Beef. Meat Science. 2001; 57(2): 209-213. DOI: https://doi.org/10.1016/S0309-1740(00)00095-4.

Faria JAB. Modeling the ℽ-Branched Optical
Fiber Bundle Displacement Sensor Using a Quasi-Gaussian Beam Approach. Microwave and Optical Technology Letters. 2000; 25(2):
138-141. DOI: https://doi.org/10.1002/(SICI)1098-2760(20
000420)25:2%3C138::AID-MOP16%3E3.0.CO;2-F.

Yasin M, Harun SW, Kusminarto, Karyono, Zaidan A, Thambiratnam K, and Ahmad H. Design and Operation of a Concentric Fiber Displacement Sensor. Fiber and Integrated. 2009; 28(4): 301-309. DOI: http://dx.doi.org/10.1080/01468030902842673.

Rahman HA, Harun SW, Norazlina S, Yasin M, and Ahmad H. Fiber Optic Displacement Sensor for Temperature Measurement. IEEE Sensors Journal. 2012; 12(5): 1361-1364. DOI: http://dx.doi.org/10.1109/JSEN.2011.2172409.

Samian and Zaidan A. Detection of Rhodamine B Levels in Destilled Water Based on Displacement Sensor Using Fiber
Coupler and Concave Mirror. Journal Optoelectron. 2016; 18(11-12): 988 992. Available from: https://www.researchgate.net/publication/31206819ZWRxs5wXu8fnzi2oHAxu7sYKoihjAhXXqFuLNjvUhA1HFHkvo5cxPGPKQcwmVWnsiKnZ6VWN8hrtCM2BcF674KfWH48DuaLh.100148163.100148163.100148163.100148163upler_and_concave_mirror.
[
Yasin M, Harun SW, Kusminarto, Karyono, and Ahmad H. Construction of Fiber Optic Sensor for Micro-Displacement Measurement Based on Refelctive Intensity Modulation Techniuque. 2nd Jogja International Physics Conference. Yogyakarta; 2007.

Yasin M, Soelistiono S,Yhuwana YGY, Khasanah M, Arof H, Irawati N, and Harun SW. Intensity Based Optical Fiber Sensors for Calcium Detection. Optoelectronics Advance Materials Rapid Communications. 2015; 9(9-10): 1185-1189. Available from: https://oam-rc.inoe.ro/index.php?option=magazine&op=view&idu=2688&catid=92.

Budiyanto M, Suhariningsih, and Yasin M. Efficiency of Optical Sensors with Quasi Gaussian Beam for Determining Cholesterol Concentration. Proceedings of the International Conference on Science and Technology (ICST 2018). 2018; 70-73. DOI: https://dx.doi.org/10.2991/icst-18.2018.15.

Downloads

Published

2019-06-30

How to Cite

Budiyanto, M., Yasin, M. and Harun, S. W. (2019) “Sensitivity Approach of Optical Sensors of Cholesterol Detection through Gaussian Beam and Quasi-Gaussian Beam”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 9(1), pp. 22–31. doi: 10.26740/jpfa.v9n1.p22-31.

Issue

Section

Articles
Abstract views: 620 , PDF Downloads: 353