Characterizing Groundwater Aquifers in Warasia, Ambon City Using Electrical Resistivity Tomography Data and Archie's Law

Authors

  • Samsul Bahri Universitas Pattimura
  • Zulfiah Universitas Pattimura
  • Muh. Riswan Anas Sukri Universitas Pattimura
  • Yohanis Toni Batlolona Universitas Pattimura
  • Wildan Nur Hamzah Akita University

DOI:

https://doi.org/10.26740/jpfa.v15n1.p27-39

Keywords:

Aquifer Characteristics, Electrical Resistivity Tomography (ERT), Archie's Law, Groundwater Porosity, Volcanic Lithology

Abstract

Identifying aquifer characteristics is vital for groundwater management, especially in volcanic terrains. This study employs Electrical Resistivity Tomography (ERT) combined with Archie's Law to delineate subsurface lithology and estimate aquifer porosity in Warasia, Ambon City. Field data were collected using a resistivity meter with two ERT profiles extending 120 meters each. The resistivity data were processed and modeled using RES2DINV, while water samples from wells were analyzed for physical parameters, including pH, conductivity, and total dissolved solids (TDS). The results reveal aquifers at depths of 3–5 meters, primarily hosted in volcanic tuff with resistivity values of 4.22–72.7 Ωm, indicating moderate to fair porosity (7.20%–14.01%). In contrast, lava formations exhibit significantly lower porosity (0.82%–1.02%) due to their solid structure. Archie's Law was instrumental in correlating resistivity with porosity, considering local lithological variability. The findings underscore the effectiveness of integrating ERT and Archie's Law for groundwater exploration in complex geological settings.

References

[1] S. Siebert et al., “Groundwater use for irrigation - A global inventory,” Hydrol. Earth Syst. Sci., vol. 14, no. 10, pp. 1863–1880, 2010, doi: https://doi.org/10.5194/hess-14-1863-2010.

[2] M. Velis, K. I. Conti, and F. Biermann, “Groundwater and human development: synergies and trade-offs within the context of the sustainable development goals,” Sustain. Sci., vol. 12, no. 6, pp. 1007–1017, 2017, doi: https://doi.org/10.1007/s11625-017-0490-9.

[3] S. Foster, J. Chilton, G. J. Nijsten, and A. Richts, “Groundwater-a global focus on the ‘local resource,’” Curr. Opin. Environ. Sustain., vol. 5, no. 6, pp. 685–695, 2013, doi: https://doi.org/10.1016/j.cosust.2013.10.010.

[4] X. Zhang, J. J. Jiao, and W. Guo, “How Does Topography Control Topography-Driven Groundwater Flow?,” Geophys. Res. Lett., vol. 49, no. 20, 2022, doi: https://doi.org/10.1029/2022GL101005.

[5] X. Chen et al., “Study on the Impact of Vegetation Restoration on Groundwater Resources in Tianshan Mountain and Yili Valley in Xinjiang, China,” Water (Switzerland), vol. 16, no. 5, 2024, doi: https://doi.org/10.3390/w16050696.

[6] X. Kuang et al., “The changing nature of groundwater in the global water cycle,” Science (80-. )., vol. 383, no. 6686, 2024, doi: https://doi.org/10.1126/science.adf0630.

[7] H. M. El-Sayed and A. R. Elgendy, “Geospatial and geophysical insights for groundwater potential zones mapping and aquifer evaluation at Wadi Abu Marzouk in El-Nagila, Egypt,” Egypt. J. Aquat. Res., vol. 50, no. 1, pp. 23–35, 2024, doi: https://doi.org/10.1016/j.ejar.2023.12.008.

[8] T. Takele, M. Husein, D. Diriba, and G. Assefa, “Application of electrical resistivity tomography for groundwater evaluation in Yirgacheffe Town and its environs, Main Ethiopian Rift,” HydroResearch, vol. 8, pp. 202–208, 2025, doi: https://doi.org/10.1016/j.hydres.2024.11.003.

[9] N. Somaratne, “Karst Conduit Networks , Connectivity and Recharge Dynamics of a Sinkhole,” Environ. Nat. Resour. Res., vol. 7, no. 3, pp. 70–88, 2017, doi: https://doi.org/10.5539/enrr.v7n3p70.

[10] F. R. Carneiro, A. A. Neto, R. M. R. de Almeida, and S. de Matos Mello, “Geotechnical description of sandy sediments of the surf zone using electrical resistivity measurements,” Rev. Bras. Geofis., vol. 36, no. 3, pp. 283–296, 2018, doi: https://doi.org/10.22564/RBGF.V36I3.1952.

[11] M. Hamahashi et al., “Contrasts in physical properties between the hanging wall and footwall of an exhumed seismogenic megasplay fault in a subduction zone — An example from the Nobeoka Thrust Drilling Project,” Geochemistry Geophys. Geosystems, vol. 14, no. 12, pp. 5354–5370, 2013, doi: https://doi.org/10.1002/2013GC004818.

[12] D. Z. Mutaqin, A. D. Haryanto, and U. Mardiana, “Contribution of Resistivity Properties in Estimating Hydraulic Conductivity in Ciremai Volcanic Deposits,” Jambura Geosci. Rev., vol. 5, no. 1, pp. 51–62, 2023, doi: https://doi.org/10.34312/jgeosrev.v5i1.17333.

[13] R. . Cosentini and S. Foti, “Evaluation of porosity and degree of saturation from seismic and electrical data,” Ge´otechnique, vol. 64, no. 4, pp. 278–286, 2014, doi: https://doi.org/10.1680/geot.13.P.075.

[14] M. J. Stephens, D. H. Shimabukuro, J. M. Gillespie, and W. Chang, “Groundwater salinity mapping using geophysical log analysis within the Fruitvale and Rosedale Ranch oil fields , Kern County ,” Hydrogeol. J., vol. 27, pp. 731–746, 2018, doi: https://doi.org/10.1007/s10040-018-1872-5.

[15] H. Dashtian, Y. Yang, and M. Sahimi, “Nonuniversality of the Archie exponent due to multifractality of resistivity well logs,” Geophys. Res. Lett., vol. 42, no. 10, pp. 655–662, 2015, doi: https://doi.org/10.1002/2015GL066400.

[16] D. Bauer et al., “From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: Influence of percolation on the electrical transport properties,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 84, no. 1, pp. 1–12, 2011, doi: https://doi.org/10.1103/PhysRevE.84.011133.

[17] J. Zhao et al., “Pore-Scale Investigation of the Electrical Property and Saturation Exponent of Archie ’ s Law in Hydrate-Bearing Sediments,” J. Mar. Sci. Eng., vol. 10, no. 111, 2022, doi: https://doi.org/10.3390/jmse10010111.

[18] S. Bahri, A. Ramadhan, and Zulfiah, “Investigation of Groundwater Quality using Vertical Electrical Sounding and Dar Zarrouk Parameter in Leihitu, Maluku, Indonesia,” J. Geosci. Eng. Environ. Technol., vol. 8, no. 3, pp. 221–228, 2023, doi: https://doi.org/10.25299/jgeet.2023.8.3.12976.

[19] R. Lewerissa, S. Sismanto, A. Setiawan, and S. Pramumijoyo, “The igneous rock intrusion beneath ambon and seram islands, eastern Indonesia, based on the integration of gravity and magnetic inversion: Its implications for geothermal energy resources,” Turkish J. Earth Sci., vol. 29, no. 4, pp. 596–616, 2020, doi: https://doi.org/10.3906/yer-1908-17.

[20] M. A. A. Mohammed, N. P. Szabó, and P. Szűcs, “Delineation of groundwater potential zones in northern Omdurman area using electrical resistivity method Delineation of groundwater potential zones in northern Omdurman area using electrical resistivity method,” IOP Conf. Ser. Earth Environ. Sci., vol. 1189, no. 012012, 2023, doi: https://doi.org/10.1088/1755-1315/1189/1/012012.

[21] V. Wayal, T. G. Sitharam, and G. M. Latha, “Geo-electrical Evaluation of Compacted Sand-Bentonite Mix Characteristics,” in 6th World Congress on Civil, Structural, and Environmental Engineering, 2021, p. 11159. doi: https://doi.org/10.11159/icgre21.lx.109.

[22] A. S. Dias, V. Gingine, and R. Cardoso, “Correspondence between electrical resistivity and total suction in compacted kaolin considering the presence of salt,” in E3S Web of Conferences, 2016, p. 10002. doi: https://doi.org/10.1051/e3sconf/20160910002.

[23] C. Masciopinto, I. S. Liso, M. C. Caputo, and L. De Carlo, “An Integrated Approach Based on Numerical Modelling and Geophysical Survey to Map Groundwater Salinity in Fractured Coastal Aquifers,” water, vol. 9, no. 875, pp. 1–13, 2017, doi: https://doi.org/10.3390/w9110875.

[24] S. Bahri, S. V. Aponno, and Zulfiah, “Global Optimization Very Fast Simulated Annealing Inversion For The Interpretation of Groundwater Potential,” J. Geofis. Eksplor., vol. 08, no. 03, pp. 225–236, 2022, doi: https://doi.org/10.23960/jge.v8i3.233.

[25] H. H. Karim, M. R. Al-Qaissy, and N. A. Aziz, “Differentiating Clayey Soil Layers from Electrical Resistivity Imaging (ERI) and Induced Polarization (IP),” Eng. Tech. J., vol. 31, no. 17, pp. 2316–2334, 2013, doi: https://doi.org/10.30684/etj.31.17a.1.

[26] M. Grigorova and I. Koprev, “3D Model of Limestone Inclusions in Maritsa Iztok Mine Based on Electrical Resistivitas Tomography,” Acta Geobalcanica, vol. 3, no. 2, pp. 51–56, 2017, doi: https://doi.org/10.18509/AGB.2017.06.

[27] S. Bahri, D. Tualepe, Y. T. Batlolona, A. Ramadhan, and W. W. Parnadi, “Vertical electrical sounding method and Dar Zarrouk analysis to identify the distribution of seawater intrusion in Pelauw Village, Maluku,” J. Degrad. Min. Lands Manag., vol. 11, no. 4, pp. 6089–6097, 2024, doi: https://doi.org/10.15243/jdmlm.2024.114.6089.

[28] P. W. J. Glover, “Archie’s law - A reappraisal,” Solid Earth, vol. 7, no. 4, pp. 1157–1169, 2016, doi: https://doi.org/10.5194/se-7-1157-2016.

[29] W. Wei, J. Cai, X. Hu, and Q. Han, “An electrical conductivity model for fractal porous media,” Geophys. Res. Lett., vol. 42, no. 12, pp. 4833–4840, 2015, doi: https://doi.org/10.1002/2015GL064460.

[30] G. M. Hamada, A. A. Almajed, T. M. Okasha, and A. A. Algathe, “Uncertainty analysis of Archie’s parameters determination techniques in carbonate reservoirs,” J. Pet. Explor. Prod. Technol., vol. 3, no. 1, pp. 1–10, 2013, doi: https://doi.org/10.1007/s13202-012-0042-x.

[31] B. Montaron, “A Quantitative Model for the Effect of Wettability on the Conductivity ofPorous Rocks,” 2007, doi: https://doi.org/10.2523/105041-ms.

[32] G. V Keller, “Rock and Mineral Properties,” in Electromagnetic methods in applied geophysics, 1987, pp. 13–52, doi: https://doi.org/10.1190/1.9781560802631.ch2.

[33] K. Li, B. Pan, and R. Horne, “Evaluating fractures in rocks from geothermal reservoirs using resistivity at different frequencies,” Energy, vol. 93, pp. 1230–1238, 2015, doi: https://doi.org/10.1016/j.energy.2015.09.084.

[34] D. Darisma, F. Fernanda, and M. Syukri, “Investigation of Groundwater Potential using Electrical Resistivity Method and Hydraulic Parameters in Lam Apeng, Aceh Besar, Indonesia,” J. Geosci. Eng. Environ. Technol., vol. 5, no. 4, pp. 185–190, 2020, doi: https://doi.org/10.25299/jgeet.2020.5.4.5501.

[35] E. Ariani and Akmam, “Mapping of rock resistivity value using geoelectrical method Schlumberger configuration in Solok Regency , West Sumatera,” J. Phys. Theor. Appl., vol. 3, no. 1, pp. 27–35, 2019, doi: https://doi.org/10.20961/jphystheor-appl.v3i1.38134.

[36] V. Navelot et al., “Petrophysical Properties of Volcanic Rocks and Impacts of Hydrothermal Alteration in the Guadeloupe Archipelago (West Indies),” J. Volcanol. Geotherm. Res., vol. 360, pp. 1–21, 2018, doi: https://doi.org/10.1016/j.jvolgeores.2018.07.004.

[37] S. Sismanto and R. Lewerissa, “Analytic Signal and Reservoir Model of Hatuasa-Talanghaha Hot Spring, Tulehu, Ambon, Indonesia Based on Magnetic Data Inversion,” Int. J. Civ. Eng. Technol., vol. 11, no. 1, pp. 137–145, 2020, doi: https://doi.org/10.34218/ijciet.11.1.2020.015.

[38] J. M. Pownall, M. A. Forster, R. Hall, and I. M. Watkinson, “Tectonometamorphic evolution of Seram and Ambon, eastern Indonesia: Insights from 40Ar/39Ar geochronology,” Gondwana Res., vol. 44, no. April, pp. 35–53, 2016, doi: https://doi.org/10.1016/j.gr.2016.10.018.

[39] K. Z. Seminsky, R. M. Zaripov, and V. V. Olenchenko, “Interpretation of shallow electrical resistivity images of faults: tectonophysical approach,” Russ. Geol. Geophys., vol. 57, no. 9, pp. 1349–1358, 2016, doi: https://doi.org/10.1016/j.rgg.2016.08.020.

[40] R. Li, Z. Xiong, Z. Wang, W. Xie, W. Li, and N. Su, “characteristics of Permian marine tuffaceous rocks in the Sichuan Basin,” Front. Earth Sci., vol. 10, no. 1054276, pp. 1–18, 2023, doi: https://doi.org/10.3389/feart.2022.1054276.

Downloads

Published

2025-06-30 — Updated on 2026-01-16

Versions

How to Cite

Bahri, S. (2026) “Characterizing Groundwater Aquifers in Warasia, Ambon City Using Electrical Resistivity Tomography Data and Archie’s Law ”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 15(1), pp. 27–39. doi: 10.26740/jpfa.v15n1.p27-39.

Issue

Section

Articles
Abstract views: 0 , PDF Downloads: 0