The Effect of Myopia on Brain Signals: Insights from EEG Studies

Authors

  • Ernawatil Gani Universitas Sam Ratulangi
  • Afrioni Roma Rio Universitas Sam Ratulangi
  • Mahendra Kusuma Nugraha Universitas Sam Ratulangi
  • Freddy Haryanto Institut Teknologi Bandung

DOI:

https://doi.org/10.26740/jpfa.v14n1.p19-32

Keywords:

Myopia, EEG Analysis, MNE Python

Abstract

Refractive vision disorders, such as myopia, can significantly influence an individual's cognitive performance, particularly their ability to perceive and interpret visual stimuli. Myopia, a common refractive error affecting children and adults, can be assessed using various methods, including electroencephalography (EEG). The primary objective of this investigation was to identify distinctive brain signals associated with myopia. This study delves into analyzing brain signals in myopic individuals by employing EEG data and spectral entropy analysis through MNE-Python. EEG data were collected from five myopic participants during a 10-minute session, both with and without their corrective glasses. The collected data underwent preprocessing and power spectral density calculations. Subsequently, spectral entropy analysis was employed to assess the complexity and distribution skewness of EEG frequency patterns. The results of this study revealed notable differences in brain activity, particularly in the occipital region, between individuals wearing glasses and those without them. This variance could be attributed to the enhanced visual clarity experienced by individuals wearing glasses, enabling them to perceive better and process the visual stimuli presented in the study videos. Specifically, spectral entropy values were lower in children without glasses (averaging 1.0) than those with glasses (averaging 3.5), indicating a higher degree of irregularity in the brain activity of myopic children who do not wear corrective eyewear. In conclusion, this study indicates an increase in brain activity irregularities among children without glasses. The findings suggest that specific factors, such as blinking and hand movements, play a role in exacerbating this irregularity. These findings reveal how myopia affects brainwave patterns and indicate that EEG and spectral entropy analysis can enhance our understanding of refractive vision disorders.

References

Pinti P, et al. The Present and Future Use of Functional Near‐infrared Spectroscopy (fNIRS) for Cognitive Neuroscience. Annals of the New York Academy of Sciences. 2020; 1464(1): 5-29. DOI: https://doi.org/10.1111/nyas.13948.

Gusein-zade NG, Slezkin AA, and Allahyarov E. Statistical Processing of Time Slices of Electroencephalography Signals during Brain Reaction to Visual Stimuli. Biomedical Signal Processing and Control. 2023; 83: 104656. DOI: https://doi.org/10.1016/j.bspc.2023.104656.

Morita M, Otsu R, & Kawasaki M. Brainwave Activities Reflecting Depressed Mood: A Pilot Study. Scientific Reports. 2023; 13(1): 14036. DOI: https://doi.org/10.1038/s41598-023-40582-y.

Jeong DK, Kim HG, & Kim JY. (2023). Automated Video Classification System Driven by Characteristics of Emotional Human Brainwaves Caused by Audiovisual Stimuli. IEEE Transactions on Cognitive and Developmental Systems, 2023; 15(2): 651–661. DOI: https://doi.org/10.1109/TCDS.2022.3179427.

Xu Y, Xu X, & Deng L. EEG Research Based on The Influence of Different Music Effects. Journal of Physics: Conference Series. 2020; 1631(1): 012147. DOI: https://doi.org/10.1088/1742-6596/1631/1/012147.

Weon HW, Byun YE, & Lim HJ. Quantitative EEG (QEEG) Analysis of Emotional Interaction Between Abusers and Victims in Intimate Partner Violence: A Pilot Study. Brain Sciences. 2021; 11(5): 570. DOI: https://doi.org/10.3390/brainsci11050570.

Suhaimi NS, Mountstephens J, and Teo J. (2020). EEG-based Emotion Recognition: A State-Of-The-Art Review of Current Trends and Opportunities. Computational Intelligence and Neuroscience. 2020; 2020(1): 8875426. DOI: https://doi.org/10.1155/2020/8875426.

Kotloski RJ. A Machine Learning Approach to Seizure Detection in A Rat Model of Post-Traumatic Epilepsy. Scientific Reports. 2023; 13(1): 15807. DOI: https://doi.org/10.1038/s41598-023-40628-1.

Duan L, Cui Y, Wang Y, Wang Z, Cao M, & Qiao Y. (2023). Epileptic Spike Detection Based On Deep Learning. Proceedings of the 2023 9th International Conference on Computing and Artificial Intelligence. New York: Association for Computing Machinery; 2023: 51–57. DOI: https://doi.org/10.1145/3594315.3594324.

Supriya S, Siuly S, Wang H, and Zhang Y. Automated Epilepsy Detection Techniques from Electroencephalogram Signals: A Review Study. Health Information Science and Systems. 2020; 8: 33. DOI: https://doi.org/10.1007/s13755-020-00129-1.

Siuly S, Khare SK, Bajaj V, Wang H, and Zhang Y. A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals. IEEE Transactions Neural Systems and Rehabilitation Engineering. 2020; 28(11): 2390–400. DOI: https://doi.org/10.1109/TNSRE.2020.3022715.

Petrescu AM, Taussig D, and Bouilleret V. Electroencephalogram (EEG) in COVID-19: A Systematic Retrospective Study. Neurophysiologie Clinique. 2020; 50(3): 155–165. DOI: https://doi.org/10.1016/j.neucli.2020.06.001.

Barry RJ and Blasio FMD. EEG Differences Between Eyes-Closed and Eyes-Open Resting Remain in Healthy Ageing. Biological Psychology. 2017; 129: 293–304. DOI: https://doi.org/10.1016/j.biopsycho.2017.09.010.

Huang X, Zhou FQ, Hu YX, Xu XX, Zhou X, Zhong YL, Wang J, and Wu XR. Altered Spontaneous Brain Activity Pattern in Patients with High Myopia Using Amplitude of Low-Frequency Fluctuation: A Resting-State fMRI Study. Neuropsychiatric Disease and Treatment. 2016; 12: 2949–2956. DOI: https://doi.org/10.2147/NDT.S118326.

Cheng Y, Huang X, Hu YX, Huang MH, Yang B, Zhou FQ, & Wu XR. Comparison of Intrinsic Brain Activity in Individuals with Low/Moderate Myopia Versus High Myopia Revealed by The Amplitude of Low-Frequency Fluctuations. Acta Radiologica. 2020; 61(4): 496–507. DOI: https://doi.org/10.1177/0284185119867633.

Huang X, et al. Altered Whole-Brain Gray Matter Volume in High Myopia Patients: A Voxel-Based Morphometry Study. NeuroReport. 2018; 29(9): 760–767. DOI: https://doi.org/10.1097/WNR.0000000000001028.

Li K, et al. Cognitive Dysfunctions in High Myopia: An Overview of Potential Neural Morpho-Functional Mechanisms. Frontiers in Neurology. 2022; 13: 1022944. DOI: https://doi.org/10.3389/fneur.2022.1022944.

Kang M, et al. Detection of Abnormal Spontaneous Brain Activity Patterns in Patients with Orbital Fractures Using Fractional Amplitude of Low Frequency Fluctuation. Frontiers in Neurology. 2022; 13: 874158. DOI: https://doi.org/10.3389/fneur.2022.874158.

Mohi-ud-Din Q and Jayanthy AK (2023). Autism Spectrum Disorder Detection Technique Using EEG and Convolution Neural Networks. AIP Conference Proceedings. 2023; 2603: 020019. DOI: https://doi.org/10.1063/5.0128348.

Angulo-Ruiz BY, Ruiz-Martínez FJ, Rodríguez-Martínez EI, Ionescu A, Saldaña D, and Gómez CM. Linear and Non-Linear Analyses of EEG in A Group of ASD Children During Resting State Condition. Brain Topography. 2023; 36(5): 736–749. DOI: https://doi.org/10.1007/s10548-023-00976-7.

Gani E, et al. Brainwaves Analysis Using Spectral Entropy in Children with Autism Spectrum Disorders (ASD). Journal of Physics: Conference Series. 2020; 1505(1): 012070. DOI: https://doi.org/10.1088/1742-6596/1505/1/012070.

Mumtaz W. Review of Challenges Associated with the EEG Artifact Removal Methods. Biomedical Signal Processing and Control. 2021; 68: 102741. DOI: https://doi.org/10.1016/j.bspc.2021.102741.

Maitin AM, et al. EEGraph: An Open-Source Python Library for Modeling Electroencephalograms Using Graphs. Neurocomputing. 2023; 519: 127–34. DOI: https://doi.org/10.1016/j.neucom.2022.11.050.

Combrisson, E, et al. Tensorpac: An Open-Source Python Toolbox for Tensor-Based Phase-Amplitude Coupling Measurement in Electrophysiological Brain Signals. PLOS Computational Biology. 2020; 16(10): e1008302. DOI: https://doi.org/10.1371/journal.pcbi.1008302.

Scharinger C, et al. Using Eye-Tracking and EEG to Study the Mental Processing Demands during Learning of Text-Picture Combinations. International Journal of Psychophysiology. 2020; 158: 201–214. DOI: https://doi.org/10.1016/j.ijpsycho.2020.09.014.

Shukla, Xitij U, and Parmar DJ. Python – A Comprehensive yet Free Programming Language for Statisticians. Journal of Statistics and Management Systems. 2016; 19(2): 277–284. DOI: https://doi.org/10.1080/09720510.2015.1103446.

Gramfort A, et al. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience. 2013; 7: 2013. DOI: https://doi.org/10.3389/fnins.2013.00267.

Harris C R, et al. Array Programming with NumPy. Nature. 2020; 585: 357–62. DOI: https://doi.org/10.1038/s41586-020-2649-2.

Zhang S, et al. M-subdwarf Research. II. Atmospheric Parameters and Kinematics. The Astrophysical Journal. 2021; 908(2): 131. DOI: https://doi.org/10.3847/1538-4357/abcfc5.

Mahendra YH, et al. Klasifikasi Data EEG Untuk Mendeteksi Keadaan Tidur Dan Bangun Menggunakan Autoregressive Model Dan Support Vector Machine. JUTI: Jurnal Ilmiah Teknologi Informasi. 2017; 15(1): 35. DOI: https://doi.org/10.12962/j24068535.v15i1.a633.

Afif NF, Pratama SH, Haryanto F, Khotimah SN, and Suprijadi. Comparison of Wet and Dry EEG Electrodes Based on Brain Signals Characterization in Temporal and Anterior Frontal Areas Using Audio Stimulation. Journal of Physics: Conference Series. 2020; 1505(1): 012069. DOI: https://doi.org/10.1088/1742-6596/1505/1/012069.

Aziezah F, Pratama SH, Yulianti, Wahidah E, Haryanto F, and Suprijadi. Characterization of Individual Alpha Frequency of EEG Signals as An Indicator of Cognitive Fatigue. Journal of Physics: Conference Series. 2020; 1505(1): 012068. DOI: https://doi.org/10.1088/1742-6596/1505/1/012068.

Murashov D, Obukhov Y, Kershner I, and Sinkin M. Frequency Features for Detecting Events in Video Sequence of Video-EEG Monitoring Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2021; XLIV-2/W1-2021: 163–166. DOI: https://doi.org/10.5194/isprs-archives-XLIV-2-W1-2021-163-2021.

Keshmiri S. Entropy and the Brain: An Overview. Entropy. 2020; 22(9): 917. DOI: https://doi.org/10.3390/e22090917.

Xiong Q, Zhang X, Wang WF, & Gu Y. A Parallel Algorithm Framework for Feature Extraction of EEG Signals On MPI. Computational and Mathematical Methods in Medicine. 2020; 2020(1): 9812019. DOI: https://doi.org/10.1155/2020/9812019.

Cheng Y, Huang X, Hu YX, Huang MH, Yang B, Zhou FQ, & Wu XR. Comparison of Intrinsic Brain Activity in Individuals with Low/Moderate Myopia Versus High Myopia Revealed by The Amplitude of Low-Frequency Fluctuations. Acta Radiologica. 2020; 61(4): 496–507. DOI: https://doi.org/10.1177/0284185119867633.

Supriyatiningsih and Meida N. Buku Referensi Kehamilan dan Gangguan Penglihatan. Yogyakarta: Elmatera Publishing; 2020.

Khakim Z and Kusrohmaniah S. Dasar—Dasar Electroencephalography (EEG) Bagi Riset Psikologi. Buletin Psikologi. 2021; 29(1): 92. DOI: https://doi.org/10.22146/buletinpsikologi.52328.

Byrom B, McCarthy M, Schueler P, and Muehlhausen W. Brain Monitoring Devices in Neuroscience Clinical Research: The Potential of Remote Monitoring Using Sensors, Wearables, and Mobile Devices. Clinical Pharmacology & Therapeutics. 2018; 104(1): 59–71. DOI: https://doi.org/10.1002/cpt.1077.

López-Hernández JL, González-Carrasco I, López-Cuadrado JL, & Ruiz-Mezcua B. Framework for The Classification of Emotions in People with Visual Disabilities Through Brain Signals. Frontiers in Neuroinformatics. 2021; 15: 642766. DOI: https://doi.org/10.3389/fninf.2021.642766.

Remy I, Bernardin F, Ligier F, Krieg J, Maillard L, Schwan R, Schwitzer T, & Laprévote V. Association Between Retinal and Cortical Visual Electrophysiological Impairments in Schizophrenia. Journal of Psychiatry and Neuroscience. 2023; 48(3): E171–E178. DOI: https://doi.org/10.1503/jpn.220224.

Retter TL, Gao Y, Jiang F, Rossion B, & Webster MA. Automatic, Early Color-Specific Neural Responses to Object Color Knowledge. Brain Topography, 2023; 36(5), 710–726. DOI: https://doi.org/10.1007/s10548-023-00979-4.

Reichert C, Ceja IFT, Sweeney-Reed CM, Heinze HJ, Hinrichs H, & Dürschmid S. Impact of Stimulus Features on The Performance of A Gaze-Independent Brain-Computer Interface Based On Covert Spatial Attention Shifts. Frontiers in Neuroscience. 2020; 14: 591777. DOI: https://doi.org/10.3389/fnins.2020.591777.

Lu J, et al. Brain Temporal-Spectral Functional Variability Reveals Neural Improvements of DBS Treatment for Disorders of Consciousness. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2024; 32: 923–33. DOI: https://doi.org/10.1109/TNSRE.2024.3368434.

Danielewska ME, Placek MM, Kicińska AK, and Rękas M. Using The Entropy of The Corneal Pulse Signal to Distinguish Healthy Eyes from Eyes Affected by Primary Open-Angle Glaucoma. Physiological Measurement. 2020; 41(5): 055011. DOI: https://doi.org/10.1088/1361-6579/ab89c8.

Huang Z. and Xiao X. Characteristics of The Postural Stability of The Lower Limb in Different Visual States of Undergraduate Students with Moderate Myopia. Frontiers in Physiology. 2023; 13: 1092710. DOI: https://doi.org/10.3389/fphys.2022.1092710.

Sanker SV, et al. Emotion-Recognition-Based Music Therapy System Using Electroencephalography Signals. In Sridhar R, Gangadharan GR, Sheng M, and Shankaran R. Edge-of-Things in Personalized Healthcare Support Systems. Cambridge: Academic Press; 2022: 217–35. DOI: https://doi.org/10.1016/B978-0-323-90585-5.00009-6.

Li Y, Zheng F, Foo LL, Wong QY, Ting D, Hoang QV, Chong R, Ang M, & Wong CW. Advances in Oct Imaging in Myopia and Pathologic Myopia. Diagnostics. 2022; 12(6): 1418. https://doi.org/10.3390/diagnostics12061418.

Zhuang Z, et al. Targeting MicroRNA in Myopia: Current Insights. Experimental Eye Research. 2024; 243: 109905. DOI: https://doi.org/10.1016/j.exer.2024.109905.

Li Y, Liu Q, and Wu J. Unveiling the Secrets of Online Consumer Choice: A Deep Learning Algorithmic Approach to Evaluate and Predict Purchase Decisions through EEG Responses. Information Processing & Management. 2024; 61(3): 103671. DOI: https://doi.org/10.1016/j.ipm.2024.103671.

Ao M, Ren S, Yu Y, Huang H, Miao X, Ao Y, & Wang W. The Effects of Blurred Visual Inputs with Different Levels on The Cerebral Activity During Free Level Walking. Frontiers in Neuroscience. 2023; 17: 1151799. DOI: https://doi.org/10.3389/fnins.2023.1151799.

Mortazavi M, Aigner KM, Antono JE, Gambacorta C, Nahum M, Levi DM, & Föcker J. Neural Correlates of Visual Spatial Selective Attention Are Altered at Early and Late Processing Stages in Human Amblyopia. European Journal of Neuroscience. 2021; 53(4): 1086–1106. DOI: https://doi.org/10.1111/ejn.15024.

Boichuk IM and Wael B. Brain Potential Response to Activation Procedures in Children with Refractive Amblyopia. Journal of Ophthalmology. 2020; 87(4): 33–37. DOI: https://doi.org/10.31288/oftalmolzh202043337.

Rauf N, Gilani SO, and Waris A. Automatic Detection of Pathological Myopia Using Machine Learning. Scientific Reports. 2022; 11(1): 16570. DOI: https://doi.org/10.1038/s41598-021-95205-1.

Foo LL, Ng WY, Lim GYS., Tan TE, Ang M, & Ting DSW. Artificial Intelligence in Myopia: Current and Future Trends. Current Opinion in Ophthalmology. 2021; 32(5): 413–424. DOI: https://doi.org/10.1097/ICU.0000000000000791.

Downloads

Additional Files

Published

2024-06-18

How to Cite

Gani, E. (2024) “The Effect of Myopia on Brain Signals: Insights from EEG Studies”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 14(1), pp. 19–32. doi: 10.26740/jpfa.v14n1.p19-32.

Issue

Section

Articles
Abstract views: 99 , PDF Downloads: 20 , PDF Downloads: 0