Enhanced Performance of Solid Polymer Electrolyte Separator Lithium Battery with Cellulose Acetate From Empty Palm Fruit Bunch Coated Al2O3-Polyacrylic Acid

Authors

  • Delovita Ginting Universitas Muhammadiyah Riau
  • Fitra Perdana Universitas Muhammadiyah Riau
  • Romi Fadli Syahputra Universitas Muhammadiyah Riau
  • Noor Maizura Ismail Universiti Malaysia Sabah

DOI:

https://doi.org/10.26740/jpfa.v13n2.p160-173

Keywords:

Solid Polymer Electrolyte, Lithium Battery Efficiency, Cellulose Acetate, Empty Palm Fruit Bunch, Al2O3-Polyacrylic Acid

Abstract

As lithium battery technology improves, it becomes more important to have solid polymer electrolyte dividers that work better. The objective of this study is to enhance the efficiency of solid polymer electrolyte separators in lithium batteries. This research aims to expand the limits of innovation in hybrid separator development by utilizing empty palm fruit bunches (OPFEB) as a plentiful source of cellulose acetate. This approach enhances ion transfer by increasing the number of pores in the separator. However, there are challenges to achieving the desired levels of optimal ionic conductivity. In order to address these constraints, this study presents a novel Al2O3-PAA inert ceramic oxide coating treatment that is applied to the separator by a spin coating technique. An electron microscope was utilized to observe the pore structure of the separator. Additionally, the separator underwent physical, mechanical, thermal, and cyclic voltammetry tests. The findings of this research indicate a significant increase in the physical properties, particularly the porosity and mechanical strength. The thermal shrinkage of the Al2O3-PAA coated separator is below 10% when exposed to a temperature of 140 oC for 30 minutes. The Cyclic Voltammetry test results demonstrate a pronounced loop curve, indicating an improvement in the ionic conductivity of the Al2O3-PAA coated separator. The findings of this study provide a method to enhance the efficiency of  separator performance at high temperatures while maintaining safety and long battery life.

References

Lu M, Zhang X, Ji J, Xu X, and Zhang Y. Research Progress on Power Battery Cooling Technology for Electric Vehicles. Journal of Energy Storage. 2020; 27: 101155. DOI: https://doi.org/10.1016/j.est.2019.101155.

Sheikholeslami M. Analyzing Melting Process of Paraffin Through the Heat Storage with Honeycomb Configuration Utilizing Nanoparticles. Journal of Energy Storage. 2022; 52: 104954. DOI: https://doi.org/10.1016/j.est.2022.104954.

Raijmakers LHJ, Danilov DL, Eichel RA, and Notten PHL. A Review on Various Temperature-Indication Methods for Li-Ion Batteries. Applied Energy. 2019; 240: 918–945. DOI: https://doi.org/10.1016/j.apenergy.2019.02.078.

Kim U, Roh Y, Choi S, Lee YS, Ryou SY, and Lee YM. Ultra-Thin Ceramic Coated Separator for High Energy Density Lithium-Ion Battery: In-Depth Analysis on Al2O3 Nano Particles Penetration into The Structure Pore. Journal of Industrial and Engineering Chemistry. 2023; 126: 137–144. DOI: https://doi.org/10.1016/j.jiec.2023.06.001.

Murashko KA, Pyrhönen J, and Jokiniemi J. Determination of The Through-Plane Thermal Conductivity and Specific Heat Capacity of a Li-Ion Cylindrical Cell. International Journal of Heat and Mass Transfer. 2020; 162: 120330. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120330.

Gao C, Li X, Wei G, Wang S, Zhao X, and Kong F. Cellulose Acetate Propionate Incorporated PVDF-HFP Based Polymer Electrolyte Membrane for Lithium Batteries. Composites Communications. 2022; 33: 101226. DOI: https://doi.org/10.1016/j.coco.2022.101226.

Xu P, Zhang D, Shao Z, and Chen D. Cellulose Acetate-Based Separators Prepared by a Reversible Acetylation Process for High-Performance Lithium-Ion Batteries. Journal of Applied Polymer Science. 2021; 138(30): 50738. DOI: https://doi.org/10.1002/app.50738.

Vatanpour V et al. Cellulose Acetate in Fabrication of Polymeric Membranes: A Review. Chemosphere. 2022; 295: 1333914. DOI: https://doi.org/10.1016/j.chemosphere.2022.133914.

Chen H et al. Cellulose-Based Separators for Lithium Batteries: Source, Preparation and Performance. Chemical Engineering Journal. 2023; 471: 144593. DOI: https://doi.org/10.1016/j.cej.2023.144593.

Zhang T, Wang X, Liang J, Chen Q, and Huang J. Environmentally Friendly Separators Based on Cellulose Diacetate-Based Crosslinked Networks for Lithium-Ion Batteries. Polymer. 2024; 290: 126564. DOI: https://doi.org/10.1016/j.polymer.2023.126564.

Serra JP et al. Sustainable Lithium-Ion Battery Separators Based on Cellulose and Soy Protein Membranes. Electrochimica Acta. 2023; 462: 142746. DOI: https://doi.org/10.1016/j.electacta.2023.142746.

Pramono E et al. Cellulose Derived from Oil Palm Empty Fruit Bunches as Filler on Polyvinylidene Fluoride Based Membrane for Water Containing Humic Acid Treatment. Groundwater for Sustainable Development. 2022; 17: 100744. DOI: https://doi.org/10.1016/j.gsd.2022.100744.

Sikder MBH et al. Enzymatic Cellulose Nanocrystal Production from Pretreated Palm Oil Empty Fruit Bunch Fibers. Materials Today: Proceeding. 2023; In Press. DOI: https://doi.org/10.1016/j.matpr.2023.10.115.

Fadzli A, Dzulkafly NS, and Rashid AA. Utilization of Oil Palm Empty Fruit Bunch Cellulose Fillers for Biodegradable Properties of Carboxylated Nitrile Butadiene Rubber Latex Films. Materials Today: Proceeding. 2022; 66: 3120–3124. DOI: https://doi.org/10.1016/j.matpr.2022.07.458.

Yanilmaz M. Cellulose based Hybrid Separators for High Performance Li-ion Batteries. European Journal of Science and Technology. 2021; 2021(28): 184-187. DOI: https://doi.org/10.31590/ejosat.994727.

Yu J, Dong N, Liu B, Tian G, Qi S, and Wu D. A Newly-Developed Heat-Resistance Polyimide Microsphere Coating to Enhance the Thermal Stability of Commercial Polyolefin Separators for Advanced Lithium-Ion Battery. Chemical Engineering Journal. 2022; 442: 136314. DOI: https://doi.org/10.1016/j.cej.2022.136314.

Wei Z, Zhang N, Feng T, Wu F, Zhao T, and Chen R. A Copolymer Microspheres-Coated Separator to Enhance Thermal Stability of Lithium-Sulfur Batteries. Chemical Engineering Journal. 2022; 430: 132678. DOI: https://doi.org/10.1016/j.cej.2021.132678.

Parikh D et al. Al2O3/TiO2 Coated Separators: Roll-To-Roll Processing and Implications for Improved Battery Safety and Performance. Journal of Power Sources. 2021; 507: 230259. DOI: https://doi.org/10.1016/j.jpowsour.2021.230259.

Cheng C, Liu H, Ouyang C, Hu N, Zha G, and Hou H. A High-Temperature Stable Composite Polyurethane Separator Coated Al2O3 Particles for Lithium Ion Battery. Composites Communications. 2022; 33: 101217. DOI: https://doi.org/10.1016/j.coco.2022.101217.

Lee DW, Lee SH, Kim YN, and Oh JM. Preparation of a High-Purity Ultrafine α-Al2O3 Powder and Characterization of An Al2O3-Coated PE Separator for Lithium-Ion Batteries. Powder Technology. 2017; 320: 125–132. DOI: https://doi.org/10.1016/j.powtec.2017.07.027.

Hyun DE et al. Multi-Functional Al2O3-Coated Separators for High-Performance Lithium-Ion Batteries: Critical Effects of Particle Shape. Ceramics International. 2023; 49(18): 30147–30155. DOI: https://doi.org/10.1016/j.ceramint.2023.06.271.

Kolm P, Behmer M, Kargl P, and Breitfuss C. Influence of Electrolyte Presence on The Vibration Behavior of a Li-Ion Pouch Cell and On the Mechanical Characteristics of Its Incorporated Al2O3-Coated Polyolefin Separator. Journal of Energy Storage. 2022; 51: 104249. DOI: https://doi.org/10.1016/j.est.2022.104249.

Firdous N and Janjua NK. CoPtx/γ-Al2O3 Bimetallic Nanoalloys as Promising Catalysts for Hydrazine Electrooxidation. Heliyon. 2019; 5(3): E01380. DOI: https://doi.org/10.1016/j.heliyon.2019.e01380.

Urbanski A et al. An Efficient Two-Polymer Binder for High-Performance Silicon Nanoparticle-Based Lithium-Ion Batteries: A Systematic Case Study with Commercial PAA and Polyvinyl Butyral Polymers. Journal of The Electrochemical Society. 2019; 166(3): A5275–A5286. DOI: https://doi.org/10.1149/2.0371903jes.

Song S et al. A New Polysulfide Blocker - Poly(Acrylic Acid) Modified Separator for Improved Performance of Lithium-Sulfur Battery. Journal of Membrane Science. 2018; 563: 277–283. DOI: https://doi.org/10.1016/j.memsci.2018.05.050.

Thang AQ et al. Partially Neutralized PAA as an Efficient Binder for Aqueous Ceramic-Coated Separators for Lithium-Ion Batteries. Chemistry As Asian Journal. 2023; 18(18): e202300538. DOI: https://doi.org/10.1002/asia.202300538.

Liang X, Yang Y, Jin X, Huang Z, and Kang F. The High Performances of SiO2/Al2O3-Coated Electrospun Polyimide Fibrous Separator for Lithium-Ion Battery. Journal of Membrane Sciennce. 2015; 493: 1–7. DOI: https://doi.org/10.1016/j.memsci.2015.06.016.

Zheng Z et al. An Efficient PDA/Al2O3 Nanosheets Reinforced Ultra-Thin ZrO2 Coating with Attractive Anti-Corrosion and Deuterium Resistance Property. Chemical Engineering Journal. 2022; 450: 138307. DOI: https://doi.org/10.1016/j.cej.2022.138307.

Liu F and Chuan X. Recent Developments in Natural Mineral-Based Separators for Lithium-Ion Batteries. RSC Advances, 2021; 11(27): 16633–16644. DOI: https://doi.org/10.1039/d1ra02845f.

Yang CT, Lin YX, Li B, Xiao X, and Qi Y. The Bonding Nature and Adhesion of PAA Coating on Li-Metal for Li Dendrite Prevention. ACS Applied Materials and Interfaces. 2020; 12(45): 51007–51015. DOI: https://doi.org/10.1021/acsami.0c14050.

Chatterjee D et al. Electrochemical Performance of Melt Impregnated Lithium Sulphur Rechargeable Cell: Effect of Crosslinked Water Soluble PAA Binder. Materials Chemistry and Physics. 2024; 312: 128583. DOI: https://doi.org/10.1016/j.matchemphys.2023.128583.

Lin S, Wang F, and Hong R. PAA and β-Cyclodextrin Polymer Cross-Linking Binders to Enhance Capacity Performance of Silicon/Carbon Composite Electrodes in lithium-Ion Batteries. Journal of Colloid and Interface Science. 2022; 613: 857–865. DOI: https://doi.org/10.1016/j.jcis.2022.01.040.

Liu J et al. Robust Bond Linkage Between Boron-Based Coating Layer and Lithium PAA Binder Enables Ultra-Stable Micro-Sized Germanium Anodes. Journal of Colloid and Interface Science. 2024; 654: 258–267. DOI: https://doi.org/10.1016/j.jcis.2023.10.031.

Hu B et al. Understanding of Pre-Lithiation of Poly(Acrylic Acid) Binder: Striking The Balances Between The Cycling Performance And Slurry Stability for Silicon-Graphite Composite Electrodes In Li-Ion Batteries. Journal of Power Sources. 2019; 416: 125–131. DOI: https://doi.org/10.1016/j.jpowsour.2019.01.068

He J, Das C, Yang F, and Maibach J. Crosslinked Poly(Acrylic Acid) Enhances Adhesion and Electrochemical Performance of Si Anodes in Li-Ion Batteries. Electrochimica Acta. 2022; 411: 140038. DOI: https://doi.org/10.1016/j.electacta.2022.140038.

Ginting D, Na Duma T, Rahmadani N, Suryani Y, and Haryanti R. Potential of Cellulose Acetat Separator of Empty Palm Oil Fruit Bunches and Polyvinylidene Fluoride for Energy Storage Applications. POSITRON. 2023; 13(1): 51-59. DOI: https://doi.org/10.26418/positron.v13i1.63784.

Ajayi SM et al. Hydrophobic Modification of Cellulose from Oil Palm Empty Fruit Bunch: Characterization and Application in Pickering Emulsions Stabilization. Carbohydrate Polymer Technologies and Applications. 2023; 5: 100282. DOI: https://doi.org/10.1016/j.carpta.2023.100282.

Kulshreshtha A. Chapter 11 - Sustainable Energy Generation from Municipal Solid Waste. In C.M. Hussain, S. Singh, and L. Goswami. Waste-to-Energy Approaches Towards Zero Waste. Amsterdam: Elsevier; 2022: 315–342. DOI: https://doi.org/10.1016/B978-0-323-85387-3.00005-7.

Serra-Parareda F, Espinach FX, Pelach MÀ, Méndez JA, Vilaseca F, and Tarrés Q. Effect of NaOH Treatment on The Flexural Modulus of Hemp Core Reinforced Composites and On the Intrinsic Flexural Moduli of The Fibers. Polymers (Basel), 2020; 12(6): 1428. DOI: https://doi.org/10.3390/polym12061428.

Saiful, Hasima S, Kamila N, and Rahmi. Cellulose Acetate from Palm Oil Bunch Waste for Forward Osmosis Membrane in Desalination of Brackish Water. Results in Engineering. 2022; 15: 100611. DOI: https://doi.org/10.1016/j.rineng.2022.100611.

Kim G et al. High Temperature Applicable Separator by Using Polyimide Aerogel/Polyethylene Double-Layer Composite Membrane for High-Safety Lithium Ion Battery. International Journal of Electrochemical Science. 2019; 14(8): 7133–7148. DOI: https://doi.org/10.20964/2019.08.18.

Choi SH, Kang HJ, Ryu EN, and Lee KP. Electrochemical Properties of Polyolefin Nonwoven Fabric Modified with Carboxylic Acid Group for Battery Separator. Radiation Physics and Chemistry. 2001; 60(4-5): 495-502. DOI: https://doi.org/10.1016/S0969-806X(00)00396-0.

Jang J, Oh J, Jeong H, Kang W, and Jo C. A Review of Functional Separators for Lithium Metal Battery Applications. Materials. 2020; 13(20): 4625. DOI: https://doi.org/10.3390/ma13204625.

Shi K et al. Solid-State Polymer Electrolytes with Polypropylene Separator-Reinforced Sandwich Structure for Room-Temperature Lithium Ion Batteries. Journal of Membrane Science. 2021; 638: 119713. DOI: https://doi.org/10.1016/j.memsci.2021.119713.

Chen Z, Ma D, Feng F, and Wang J. A Salt-Free Poly(Acrylic Acid) Hydrogel Electrolyte with Self-Released Ions For Quasi-Solid-State Electrochromic Devices. Solar Energy Materials and Solar Cells. 2024; 266: 112644. DOI: https://doi.org/10.1016/j.solmat.2023.112644.

Tkachenko LI et al. Electrochemical Behavior of Polydiphenylamine-2-Carboxylic Acid and Its Hybrid Nanocomposites with Single-Walled Carbon Nanotubes on Anodized Graphite Foil in Lithium Aprotic Electrolyte. Reactive and Functional Polymers. 2022; 173: 105225. DOI: https://doi.org/10.1016/j.reactfunctpolym.2022.105225.

Zhong S et al. Recent Progress in Thin Separators for Upgraded Lithium Ion Batteries. Energy Storage Materials. 2021; 41: 805–841. DOI: https://doi.org/10.1016/j.ensm.2021.07.028.

He J, Das C, Yang F, and Maibach J. Crosslinked Poly(Acrylic Acid) Enhances Adhesion and Electrochemical Performance of Si Anodes in Li-ion Batteries. Electrochimica Acta. 2022; 411: 140038. DOI: https://doi.org/10.1016/j.electacta.2022.140038.

Serhan M et al. Total Iron Measurement in Human Serum with a Smartphone. AIChE Annual Meeting, Conference Proceedings. Orlando: American Institute of Chemical Engineers; 2019. Available from: https://asu.elsevierpure.com/en/publications/total-iron-measurement-in-human-serum-with-a-smartphone.

Moon J, Jeong JY, Kim JI, Kim S, and Park JH. An Ultrathin Inorganic-Organic Hybrid Layer on Commercial Polymer Separators for Advanced Lithium-Ion Batteries. Journal of Power Sources. 2019; 416: 89–94. DOI: https://doi.org/10.1016/j.jpowsour.2019.01.075.

Lee J, Lee CL, Park K, and Kim ID. Synthesis of an Al2O3-Coated Polyimide Nanofiber Mat and Its Electrochemical Characteristics as a Separator for Lithium Ion Batteries. Journal of Power Sources. 2014; 248: 1211–1217. DOI: https://doi.org/10.1016/j.jpowsour.2013.10.056.

Downloads

Published

2023-12-30

How to Cite

Ginting, D., Perdana, F., Syahputra, R. F. and Ismail, N. M. (2023) “Enhanced Performance of Solid Polymer Electrolyte Separator Lithium Battery with Cellulose Acetate From Empty Palm Fruit Bunch Coated Al2O3-Polyacrylic Acid”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 13(2), pp. 160–173. doi: 10.26740/jpfa.v13n2.p160-173.

Issue

Section

Articles
Abstract views: 119 , PDF Downloads: 57