A-Site Doped in Perovskite La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 (x = 0, 0.1, and 0.3) for Absorbing Microwave Material

Authors

  • Sitti Ahmiatri Saptari UIN Syarif Hidayatullah Jakarta
  • Dinda Hapitanur UIN Syarif Hidayatullah
  • Yana Taryana Badan Riset dan Inovasi Nasional
  • Nanang Sudrajat Badan Riset dan Inovasi Nasional
  • Ikhwan Nur Rahman Chungbuk National University
  • Dwi Nanto UIN Syarif Hidayatullah

DOI:

https://doi.org/10.26740/jpfa.v13n2.p106-118

Keywords:

Microwave absorber, perovskite manganate, reflection loss, sol-gel method

Abstract

Microwave radiation can have harmful effects on our bodies. With increased exposure due to online activities, it is essential to use absorber materials like perovskite manganate to reduce radiation. In this study, perovskite manganate La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 (x = 0, 0.1, and 0.3) was synthesized using the sol-gel method. X-ray diffraction (XRD) analysis revealed that the two samples were multi-phased, LaMnO3 and La2Ti2O7, and were formed, exhibiting a rhombohedral crystal structure (R -3 c). Morphological characterization of the sample surface using a Scanning Electron Microscope (SEM) showed that as doping increases, the grain size decreases from 282.02 to 245.63 nm at x=0 and x=0.3, respectively. This result implies that doping leads to more uniform grain distribution and enhanced grain refinement. Characterization via Vibrating Sample Magnetometer (VSM) revealed that the maximum saturation value, 0.79 emu/g, was attained when x = 0. This sample exhibits soft magnetic properties, as evidenced by its coercivity (Hc) value of < 1kOe. Results from the Vector Network Analyzer (VNA) indicate that the absorption capacity of La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 increases, with a maximum reflection loss value of -25.5 dB with 1.5 mm thickness. Consequently, La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 demonstrates potential as a microwave absorber material.

References

Hu C, Zuo H, and Li Y. Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Front Public Health. 2021; 9: 691880. DOI: https://doi.org/10.3389/fpubh.2021.691880.

Liu X, Yan X, Zhang S, Liu Z, Win TTY, and Ren L. The Effects of Electromagnetic Fields on Human Health: Recent Advances and Future. Journal of Bionic Engineering. 2021; 18: 210–237. DOI: https://doi.org/10.1007/s42235-021-0015-1.

Taryana Y, Manaf A, Sudrajat N, and Wahyu Y. Electromagnetic Wave Absorbing Materials on Radar Frequency Range. Jurnal Keramik dan Gelas Indonesia. 2019; 28(1): 1-28. DOI: https://doi.org/10.32537/jkgi.v28i1.5197.

Akinay Y, Gunes U, Çolak B, and Cetin T. Recent Progress of Electromagnetic Wave Absorbers: A Systematic Review and Bibliometric Approach. ChemPhysMater. 2023; 2(3): 197-206. DOI: https://doi.org/10.1016/j.chphma.2022.10.002.

Aritonang S, Adi WA, Juhana R, and Herawan T. Structural and Reflection Loss Properties of Fe3+ Substituted Lanthanum Manganite as Microwave Absorbing Material in X-ku Band. In Chaari F, Gherardini F, Ivanov V, and Haddar M (Eds.), Lecture Notes in Mechanical Engineering. Singapore: Springer Singapore; 2021: 949–959. DOI: https://doi.org/10.1007/978-981-15-9505-9_83.

Adi WA, Sarwanto Y, Taryana Y, and Soegijono B. Effects of The Geometry Factor on The Reflection Loss Characteristics of The Modified Lanthanum Manganite. Journal of Physics: Conference Series. 2018; 1091: 012028. DOI: https://doi.org/10.1088/1742-6596/1091/1/012028.

Rahmouni H, Dhahri A, and Khirouni K. The effect of Tin Addition on The Electrical Conductivity of Sn-doped LaBaMnO3. Journal of Alloys and Compound. 2014; 591: 259–262. DOI: https://doi.org/10.1016/j.jallcom.2013.12.108.

Moratal S, Benavente R, Salvador MD, Peñaranda-Foix FL, Moreno R, and Borrell A. Microwave Sintering Study of Strontium-Doped Lanthanum Manganite in A Single-Mode Microwave with Electric and Magnetic Field at 2.45 GHz. Journal of The European Ceramic Society. 2022; 42: 5624–5630. DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.05.060.

Lee YH and Mahendiran R. Transport and Electron Spin Resonance Studies in Mo-doped LaMnO3. AIP Advances. 2023; 13(2): 025115. DOI: https://doi.org/10.1063/9.0000442.

Mo H, Nan H, Lang X, Liu S, Qiao L, Hu X, and Tian H. Influence Of Calcium Doping on Performance of LaMnO3 Supercapacitors. Ceramics International. 2018; 44(8): 9733–9741. DOI: https://doi.org/10.1016/j.ceramint.2018.02.205.

Vazhayil A, Thomas J, and Thomas N. Cobalt Doping in LaMnO3 Perovskite Catalysts – B Site Optimization by Solution Combustion for Oxygen Evolution Reaction. Journal of Electroanalytical Chemistry. 2022; 918: 116426. DOI: https://doi.org/10.1016/j.jelechem.2022.116426.

Autieri C, Cuoco M, Cuono G, Picozzi S, and Noce C. Orbital Order and Ferromagnetism in LaMn1−xGaxO3. Physica B Condens Matter. 2023; 648: 414407. DOI: https://doi.org/10.1016/j.physb.2022.414407.

Chen Y, Yan QQ, and Cui YM. Dielectric Properties of A, B-Site Mn-Doped LaTiO3+δ. Materials Science Forum. 2018; 921: 78–84. DOI: https://doi.org/10.4028/www.scientific.net/MSF.921.78.

Jha P, Rai S, Ramanujachary KV, Lofland SE, and Ganguli AK. (La0.4Ba0.4Ca0.2)(Mn0.4Ti0.6)O3: A New Titano-Manganate With A High Dielectric Constant and Antiferromagnetic Interactions. Journal of Solid State Chemistry. 2004; 177(8): 2881–2888. DOI: https://doi.org/10.1016/j.jssc.2004.05.009.

Rizky F, Saptari SA, Tjahjono A, and Khaerudini DS. Perovskite Manganit Analysis Based on La0.7Ca0.3Mn1-xTixO3 (x=0, 0.1, 0.2, and 0.3) as Potential Microwave Absorber Material with Sol-Gel Method. Journal of Physics: Theories and Application. 2022; 6(1): 17-24. DOI: https://doi.org/10.20961/jphystheor-appl.v6i1.59142.

Li G, Hu G-G, Zhou H-D, Fan X-J, and Li X-G. Absorption of Microwaves in La1−xSrxMnO3 Manganese Powders Over A Wide Bandwidth. Journal of Applied Physics. 2001; 90(11): 5512–5514. DOI: https://doi.org/10.1063/1.1415053.

Adi WA. Pengembangan Bahan Magnetik Sistem La(1-Y)BayFexMn½(1-X)Ti½(1-X)O3 (X = 0 – 1,0 Dan Y = 0 – 1,0) Sebagai Bahan Penyerap Gelombang Elektromagnetik. Dissertation. Depok: Universitas Indonesia; 2014.

Goldschmidt VM. Die Gesetze der Krystallochemie. Naturwissenschaften. 1926; 14: 477–485. DOI: https://doi.org/10.1007/BF01507527.

Behara S and Thomas T. Stability and Amphotericity Analysis in Rhombohedral ABO3 Perovskites. Materialia. 2020; 13: 100819. DOI: https://doi.org/10.1016/j.mtla.2020.100819.

Vaitkus A, Merkys A, and Gražulis S. Validation of the Crystallography Open Database using the Crystallographic Information Framework. Journal of Applied Crystallography. 2021; 54: 661–672. DOI: https://doi.org/10.1107/S1600576720016532.

Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, et al. Crystallography Open Database (COD): An Open-Access Collection of Crystal Structures and Platform for World-Wide Collaboration. Nucleic Acids Research. 2012; 40(D1): D420–D427. DOI: https://doi.org/10.1093/nar/gkr900.

Gražulis S, Chateigner D, Downs RT, Yokochi AFT, Quirós M, Lutterotti L, et al. Crystallography Open Database – An Open-Access Collection of Crystal Structures. Journal of Applied Crystallography. 2009; 42: 726–729. DOI: https://doi.org/10.1107/S0021889809016690.

Merkys A, Vaitkus A, Grybauskas A, Konovalovas A, Quirós M, and Gražulis S. Graph Isomorphism-Based Algorithm for Cross-Checking Chemical and Crystallographic Descriptions. Journal of Cheminformatics. 2023; 15: 25. DOI: https://doi.org/10.1186/s13321-023-00692-1.

Hanif SH bt M, Primus WC, and Sinin AE. Effect of Strontium Doping on Structural and Electrical Properties of LMTO Ceramic. AIP Conference Proceedinsgs. 2021; 2332(1): 040003. DOI: https://doi.org/10.1063/5.0042872.

Toby BH. EXPGUI, A Graphical User Interface for GSAS. Journal of Applied Crystallography. 2001; 34: 210–213. DOI: https://doi.org/10.1107/S0021889801002242.

Qu X-Y, Gou X-F, and Wang T-G. A Highly Accurate Interatomic Potential for LaMnO3 Perovskites with Temperature-Dependence of Structure and Thermal Properties. Computational Materials Science. 2021; 193: 110406. DOI: https://doi.org/10.1016/j.commatsci.2021.110406.

Hamdi R, Hayek SS, Samara A, Tong Y, Mansour SA, and Haik Y. Williamson-Hall Technique for Magnetic Cooling in Nanosized Manganite LaNi0.25Mn0.75O3 and Ferrite LaNi0.25Fe0.75O3. Solid State Sciences. 2023; 142: 107223. DOI: https://doi.org/10.1016/j.solidstatesciences.2023.107223.

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, and Eliceiri KW. ImageJ2: ImageJ for The Next Generation of Scientific Image Data. BMC Bioinformatics. 2017; 18: 529. DOI: https://doi.org/10.1186/s12859-017-1934-z.

Yadav PA, Deshmukh A V, Adhi KP, Kale BB, Basavaih N, and Patil SI. Role of Grain Size on The Magnetic Properties of La0.7Sr0.3MnO3. Journal of Magnetism and Magnetic Materials. 2013; 328: 86–90. DOI: https://doi.org/10.1016/j.jmmm.2012.09.056.

Navin K and Kurchania R. The Effect of Particle Size on Structural, Magnetic and Transport Properties of La0.7Sr0.3MnO3 Nanoparticles. Ceramics International. 2018; 44(5): 4973–4980. DOI: https://doi.org/10.1016/j.ceramint.2017.12.091.

Navin K and Kurchania R. The Effect of Shell Layer on Magnetic, Transport, and Electrochemical Properties of La0.7Sr0.3MnO3 Nanoparticles. Ceramics International. 2021; 47(11): 15859–15867. DOI: https://doi.org/10.1016/j.ceramint.2021.02.160.

Orgiani P, Galdi A, Aruta C, Cataudella V, De Filippis G, Perroni CA, et al. Multiple Double-Exchange Mechanism by Mn2+ Doping in Manganite Compounds. Physics Review B. 2010; 82: 205122. DOI: https://doi.org/10.1103/PhysRevB.82.205122.

Amor N Ben, Bejar M, Dhahri E, Bekri M, Valente MA, and Hlil EK. Study of the Physical Properties of La2−xErxTi2O7(0 ≤ x ≤ 0.075) Compounds. The European Physical Journal Applied Physics. 2012; 59: 10601. DOI: https://doi.org/10.1051/epjap/2012120142.

Jacko R, Csach K, Pristáš G, Mihalik Jr. M, Zentková M, and Mihalik M. Magnetic Properties of (DyxLa1-x)2Ti2O7. Acta Physica Polonica A. 2020; 137: 997–999. DOI: https://doi.org/10.12693/APhysPolA.137.997.

Adi WA, Indro MN, and Kusumastuti AA. Effect of Manganese Addition on the Structure, Magnetic Properties and Microwave Absorption of La0.8Ba0.2MnxFe½(1-x)Ti½(1-x)O3. IOP Conference Series: Earth and Environmental Science. 2017; 58: 012047. DOI: https://doi.org/10.1088/1755-1315/58/1/012047.

Li G, Hu G-G, Zhou H-D, Fan X-J, and Li X-G. Attractive Microwave-Absorbing Properties of La1−xSrxMnO3 Manganite Powders. Materials Chemistry and Physics. 2002; 75(1-3): 101–104. DOI: https://doi.org/10.1016/S0254-0584(02)00039-1.

Admi RI, Saptari SA, Tjahjono A, Rahman IN, and Adi WA. Synthesis and Characterization Microwave Absorber Properties of La0.7(Ca1-xSrx)0.3MnO3 Prepared by Sol-Gel Method. Journal of Physics: Conference Series. 2021; 1816: 012091. DOI: https://doi.org/10.1088/1742-6596/1816/1/012091.

Kumar D, Yadav RS, Monika, Singh AK, and Rai SB. Synthesis Techniques and Applications of Perovskite Materials. In Tian H. Perovskite Materials, Devices and Integration. London: IntechOpen; 2020. DOI: https://doi.org/10.5772/intechopen.86794.

Downloads

Published

2023-12-30

How to Cite

Saptari, S. A., Hapitanur, D., Taryana, Y., Sudrajat, N., Rahman, I. N. and Nanto, D. (2023) “A-Site Doped in Perovskite La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 (x = 0, 0.1, and 0.3) for Absorbing Microwave Material”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 13(2), pp. 106–118. doi: 10.26740/jpfa.v13n2.p106-118.

Issue

Section

Articles
Abstract views: 224 , PDF Downloads: 89