Relation Between Transport Distance with Frequency-Dependent Volume Magnetic Susceptibility in Surabaya River Sediments

Mariyanto Mariyanto, Ayi Syaeful Bahri, Widya Utama, Wien Lestari, Linda Silvia, Titis Lestyowati, Muhammad Khayrul Anwar, Wahyu Ariffiyanto, Ahmad Irfaan Hibatullah, Moh Faisal Amir


Volume magnetic susceptibility measurements have been widely used in numerous studies related to river sediment characterization. A study of the transport distance effect toward the frequency-dependent volume magnetic susceptibility is needed to identify the superparamagnetic grain behavior in river sediments. The purpose of this study is to identify the presence of superparamagnetic grains and to obtain the relation between transport distances and frequency-dependent volume magnetic susceptibility in river sediments. The sediment samples were taken and measured by using the Bartington MS2B Susceptibilitymeter at two different frequencies of 470 Hz and 4700 Hz. The measurement results show that the sediment transport distance is directly proportional to the frequency-dependent volume magnetic susceptibility. Superparamagnetic grain content is identified to tend to be higher as the distance of sediment transport increases.


magnetic susceptibility; river sediments; transport distance; superparamagnetic grain

Full Text:



Sehah S and Raharjo SA. Application of Magnetic Survey to Explore the Iron Ore DepositSs in the Nusawungu Coastal Regency of Cilacap Central Java. Jurnal Penelitian Fisika dan Aplikasinya (JPFA). 2017; 7(2): 79–88. DOI:

Santosa BJ, Mashuri M, Sutrisno WT, Wafi A, Salim R, and Armi R. Interpretasi Metode Magnetik untuk Penentuan Struktur Bawah Permukaan di Sekitar Gunung Kelud Kabupaten Kediri. Jurnal Penelitian Fisika dan Aplikasinya (JPFA). 2012; 2(1): 7–14. DOI:

Zhdanov MS and Lin W. Adaptive Multinary Inversion of Gravity and Gravity Gradiometry Data. Geophysics. 2017; 82(6): G101–G114. DOI:

Nuha DYU, Maryanto S, and Santoso DR. Determination of the Direction of Hot Fluid Flow in Cangar Area, Arjuno-Welirang Volcano Complex, East Java using Self Potential Method. Jurnal Penelitian Fisika dan Aplikasinya (JPFA). 2017; 7(2): 123–132. DOI:

Mariyanto, Priahadena H, and Parnadi WW. Application of Vertical Electrical Sounding Method to Identify Distribution of Hot Groundwater Around the Hotsprings in Geothermal Prospect Area. ASEG Extended Abstracts. 2016; 2016(1): 1–5. DOI:

Mariyanto M and Priahadena H. Occam’s Inversion of Vertical Electrical Sounding Data to Identify Hot Groundwater in Geothermal Prospect Area in Bumiaji Area, Malang, Indonesia. Proceeding of International Conference and Exhibition. 2016; 190. DOI:

Guo Z, Dong H, and Kristensen Å. Image-Guided Regularization of Marine Electromagnetic Inversion. Geophysics. 2017; 82(4): E221–E232. DOI:

Mariyanto, Santosa BJ, and Bahri AS. Estimasi Poisson’s Ratio untuk Analisis Derajat Saturasi Air pada Reservoir Geotermal Menggunakan Data MEQ. Jurnal Sains dan Seni ITS. 2013; 2(2): B63–B67. DOI:

Vishnu CS, Lahiri S, and Mamtani MA. The Relationship between Magnetic Anisotropy, Rock-strength Anisotropy and Vein Emplacement in Gold-bearing Metabasalts of Gadag (South India). Tectonophysics. 2018; 722: 286–298. DOI:

Mattsson HB, Balashova A, Almqvist BSG, Bosshard-Stadlin SA, and Weidendorfer D. Magnetic Mineralogy and Rock Magnetic Properties of Silicate and Carbonatite Rocks from Oldoinyo Lengai Volcano (Tanzania). Journal of African Earth Sciences. 2018; 142: 193–206. DOI:

Mariyanto and Armawa N. Characterization of Urban Topsoils around the Rivers based on Magnetic Properties and Microstructure: Investigation of Environmental Pollution. Proceeding of International Conference on Engineering Geophysics. 2017; 484–487. DOI:

Preetz H, Igel J, Hannam JA, and Stadler S. Relationship between Magnetic Properties and Reddening of Tropical Soils as Indicators of Weathering. Geoderma. 2017; 303: 143–149. DOI:

Sarmast M, Farpoor MH, and Boroujeni IE. Magnetic Susceptibility of Soils along a Lithotoposequence in Southeast Iran. Catena. 2017; 156: 252–262. DOI:

Mariyanto and Bijaksana S. Magnetic Properties of Surabaya River Sediments, East Java, Indonesia. AIP Conference Proceedings. 2017; 1861(1): 030045. DOI:

Novala GC, Sudarningsih, Kirana KH, Fajar SJ, Mariyanto, and Bijaksana S. Testing the Effectiveness of Mechanical Magnetic Extraction in Riverine and Lacustrine Sediments. Journal of Physics: Conference Series. 2018; Article in press.

Xu S, Ding X, Yu L, and Ni Z. Palaeoclimatic Implications of Aeolian Sediments on the Miaodao Islands, Bohai Sea, East China, Based on OSL Dating and Proxies. Aeolian Research. 2015; 19: 259–266. DOI:

Grimley DA, Anders AM, Bettis EA, Bates BL, Wang JJ, Butler SK, and Huot S. Using Magnetic Fly Ash to Identify Post-settlement Alluvium and Its Record of Atmospheric Pollution, Central USA. Anthropocene. 2017; 17: 84–98. DOI:

Górka-Kostrubiec B. The Magnetic Properties of Indoor Dust Fractions as Markers of Air Pollution Inside Buildings. Building and Environment. 2015; 90: 186–195. DOI:

Paramasivam K, Ramasamy V, and Suresh G. Impact of Sediment Characteristics on the Heavy Metal Concentration and Their Ecological Risk Level of Surface Sediments of Vaigai River, Tamilnadu, India. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 137: 397–407. DOI:

Drab L, Carlut J, Hubert-Ferrari A, Martinez P, LePoint G, and El Ouahabi M. Paleomagnetic and Geochemical Record from Cores from the Sea of Marmara, Turkey: Age Constraints and Implications of Sapropelic Deposition on Early Diagenesis. Marine Geology. 2015; 360: 40–54. DOI:

Yunginger R, Bijaksana S, Dahrin D, Zulaikah S, Hafidz A, Kirana KH, Sudarningsih, Mariyanto, and Fajar SJ. Lithogenic and Anthropogenic Components in Surface Sediments from Lake Limboto as Shown by Magnetic Mineral Characteristics, Trace Metals, and REE Geochemistry. Geosciences. 2018; 8(4): 116. DOI:

Rowntree KM, van der Waal BW, and Pulley S. Magnetic Susceptibility as a Simple Tracer for Fluvial Sediment Source Ascription During Storm Events. Journal of Environmental Management. 2017; 194: 54–62. DOI:

Mzuza MK, Zhang W, Kapute F, and Selemani JR. Magnetic Properties of Sediments from the Pangani River Basin, Tanzania: Influence of Lithology and Particle Size. Journal of Applied Geophysics. 2017; 143: 42–49. DOI:

Kozhevnikov NO, Kamnev YK, and Kazansky AY. Error Analysis of Frequency-Dependent Magnetic Susceptibility Measurements: Magnetic Viscosity Studies with the Bartington MS2 System. Russian Geology and Geophysics. 2014; 55(4): 508–514. DOI:

Hannam JA and Dearing JA. Modeling Soil Magnetic Susceptibility and Frequency-Dependent Susceptibility to Aid Landmine Clearance. Proceedings of SPIE. 2006; 62170M. DOI:

Fannin PC, Relihan T, and Charles SW. Experimental and Theoretical Profiles of the Frequency-Dependent Complex Susceptibility of Systems Containing Nanometer-sized Magnetic Particles. Physical Review B. 1997; 55(21): 14423–14428. DOI:

Goebel M-O, Krueger J, Fleige H, Igel J, Horn R, and Bachmann J. Frequency Dependence of Magnetic Susceptibility as a Proxy for Fine-Grained Iron Minerals and Aggregate Stability of South Chilean Volcanic Ash Soils. Catena. 2017; 158: 46–54. DOI:

Chlupáčová M, Hrouda F, Nižňanský D, Procházka V, Petáková Z, and Laufek F. Frequency-Dependent Susceptibility and Other Magnetic Properties of Celtic and Mediaeval Graphitic Pottery from Bohemia: an Introductory Study. Studia Geophysica et Geodaetica. 2012; 56(3): 803–825. DOI:

Özdemir Ö, Dunlop DJ, and Jackson M. Frequency and Field Dependent Susceptibility of Magnetite at Low Temperature. Earth, Planets and Space. 2009; 61(1): 125–31. DOI:

Fannin PC, Vincent D, Massart G, Perov P, and Neveu S. A Study of the Frequency Dependent Susceptibility of a Colloidal Suspension of Manganese Ferrite (MnFe2O4) Nanoparticles. The European Physical Journal Applied Physics. 1999; 8(3): 247–51. DOI:

Van Berkum S, Dee J, Philipse A, and Erné B. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel. International Journal of Molecular Sciences. 2013; 14(12): 10162–10177. DOI:

Dearing JA. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. 2nd Edition. Keniloworth: Chi Publishing; 1999.

Lowrie W. Fundamentals of Geophysics. New York: Cambridge University Press; 1997: 354.

Evans ME and Heller F. Environmental Magnetism: Principles and Applications of Enviromagnetics. Vol. 86. Sandiego: Academic Press; 2003.

Dunlop DJ and Özdemir O. Rock Magnetism: Fundamentals and Frontiers. New York: Cambridge University Press; 1997: 573. (Cambridge Studies in Magnetism).

Supandjono JB, Hasan K, and Panggabean H, Satria D, and Sukardi. Geological Map of Surabaya and Sapulu Quadrangle, Java. Bandung, Indonesia: Geological Research and Development Center of Indonesia; 1992.

Chaparro MAE, Sinito AM, Ramasamy V, Marinelli C, Chaparro MAE, Mullainathan S, and Murugesan S. Magnetic Measurements and Pollutants of Sediments from Cauvery and Palaru River, India. Environmental Geology. 2008; 56(2): 425–437. DOI:

Article Metrics
Abstract view: 74 times
PDF: 13 times


  • There are currently no refbacks.

Copyright (c) 2018 Jurnal Penelitian Fisika dan Aplikasinya (JPFA)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Universitas Negeri Surabaya

in collaboration with:

Perkumpulan Pendidik IPA Indonesia (PPII)
SK Kemkumham: pdf

Supporting Organization

Himpunan Fisika Indonesia (HFI) cabang Surabaya
Relawan Jurnal Indonesia (RJI)



Copyright (c) Jurnal Penelitian Fisika dan Aplikasinya (JPFA)

ISSN 2477-1775 (Online) and ISSN 2087-9946 (Print)