The Effect of Temperature Variation on Conductivity Value of Cathode Lithium Ferro Phosphate Carbon Composite

Authors

DOI:

https://doi.org/10.26740/jpfa.v8n2.p84-90

Keywords:

iron rock, Cathode, solid-state reaction, LFP/C

Abstract

The lithium ferrous phosphate carbon composite (LFP/C) cathode material has been successfully synthesized using solid-state reaction method by utilizing one of the natural sources of iron rocks in Tanah Laut, Kalimantan, as the base material of Fe. Solid-state reaction method was done by using high energy ball milling tool. The LFP cathode material was prepared using a base material (Li2CO3), Fe3O4, and (NH4)2HPO4 in a ratio of 3:6:2 and 5% wt. of Citric acid as a carbon source. There were some variations of calcination temperature used under inert conditions at 400 °C, 500 °C, 600 °C, and 700 °C to determine the effect on the phase structure and electrical conductivity produced by LFP/C cathode composites. Characterization of phase structure was done by using X-ray powder diffraction (XRD), while the conductivity value of the sample was tested using Electrochemical Impedance Spectroscopy (EIS). The analysis of the diffraction pattern shows the largest composition of olivine structure formed at 700 °C at 93.3% wt. with Fe2O3 impurities of 6.7% wt. The highest conductivity value of LFP/C is shown by sampling with 500 °C calcination temperature with a total conductivity value of 5,676 x 10-3 S.cm-1.

Author Biographies

Metatia Intan Mauliana, Universitas Muhammadiyah Sidoarjo

Faculty of Engineering, Universitas Muhammadiyah Sidoarjo

Mochamad Zainuri, Institut Teknologi Sepuluh Nopember

Physics Departement, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember

References

Zuo D, Tian G, Li X, Chen D, and Shu K. Recent Progress in Surface Coating of Cathode Materials for Lithium Ion Secondary Batteries. Journal of Alloys and Compounds. 2017; 706: 24-40. DOI: https://dx.doi.org/10.1016/j.jallcom.2017.02.230.

Shim JH, Lee S, and Park SS. Effects of MgO Coating on the Structural and Electrochemical Characteristics of LiCoO2 as Cathode Materials for Lithium Ion Battery. Chemistry of Materials. 2014; 26(8): 2537-2543. DOI: https://dx.doi.org/10.1021/cm403846a.

Song J, Sun B, Liu H, Ma Z, Chen Z, Shao G, and Wang G. Enhancement of the Rate Capability of LiFePO4 by a New Highly Graphitic Carbon-Coating Method. ACS Applied Materials and Interfaces. 2016; 8(24): 15225-15231. DOI: https://dx.doi.org/10.1021/acsami.6b02567.

Satyavani TVSL, Kumar AS, and Subba Rao PSV. Methods of Synthesis and Performance Improvement of Lithium Iron Phosphate for High Rate Li-ion Batteries: A review. Engineering Science and Technology. Engineering Science and Technology, an International Journal. 2016; 19(1): 178-188. DOI: https://dx.doi.org/10.1016/j.jestch.2015.06.002.

Ruan YL. Effect of doping ions on electrochemical properties of LiFePO4 cathode. Advanced Materials Research. 2011; 197-198: 1135-1138. DOI: https://dx.doi.org/10.4028/www.scientific.net/AMR.197-198.1135.

Zhang DY, Zhang L, Zhang PX, Lin MC, Huang XQ, Ren XZ, and Xu QM. Modification of LiFePo4 by Citric Acid Coating and Nb5+ Doping. Advanced Materials Research. 2011; 158: 167-173. DOI: https://dx.doi.org/10.4028/www.scientific.net/AMR.158.167.

Uddin MJ, Alaboina P, Cho S. Nanostructured cathode materials synthesis for lithium-ion batteries. Materials Today Energy. 2017; 5: 138-157. DOI: https://doi.org/10.1016/j.mtener.2017.06.008.

Eftekhari A. LiFePO4/C Nanocomposites for Lithium-ion Batteries. Journal of Power Source. 2017; 343: 395-411. DOI: https://doi.org/10.1016/j.jpowsour.2017.01.080.

Chunli G, Zhigang X, Sheng W, Yunsheng Y, and Xiaolin X. Advanced Carbon Materials/ Olivine LiFePO4 Composites Cathode for Lithium Ion Batteries. Journal of Power Source. 2016; 318: 93-112. DOI: https://doi.org/10.1016/j.jpowsour.2016.04.008.

Li XL, Kang FY. Bai X and Shen W. A novel network composite cathode of LiFePO4 / multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications. 2007; 9(4): 663-666. DOI: https://doi.org/10.1016/j.elecom.2006.10.050.

Zhang H, Xu Y, Zhao C, Yang X, and Jiang Q. Effects of carbon coating and metal ions doping on low temperature electrochemical properties of LiFePO4 cathode material. Electrochimica Acta. 2012; 83: 341-347. DOI: https://doi.org/10.1016/j.electacta.2012.07.128.

Sinha NN. High Rate Capability of a Dual Porosity LiFePO4/C Composite. ACS Applied Materials & Interfaces. 2010; 2(7): 2031-2038. DOI: https://dx.doi.org/10.1021/am100309w.

Qian JF. Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C. 2010; 114(8): 3477-3482. DOI: https://dx.doi.org/10.1021/jp912102k.

Sun CW, Rajasekhara S, Goodenough JB, and Zhou F. Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode. Journal of the American Chemical Society. 2011; 133(7): 2132-2135. DOI: https://dx.doi.org/10.1021/ja1110464.

Wood DL, Li J, and Daniel C. Prospects for Reducing the Processing Cost of Lithium Ion Batteries. Journal of Power Source. 2015; 275: 234-242. DOI: https://doi.org/10.1016/j.jpowsour.2014.11.019.

Hong SA, Kim SJ, Kim J, Lee BG, Chung KY, and Lee YW. Carbon Coating on Lithium Iron Phosphate (LiFePO4): Comparison Between Continuous Supercritical Hydrothermal Method and Solid-state Method. The Chemical Engineering Journal. 2012; 198-199: 318-326. DOI: https://doi.org/10.1016/j.cej.2012.05.058.

Wang L, Sun W, Tang X, Huang X, He X, Li J Zhang Q, Gao J, Tian G, and Fan S. Nano Particles LiFePO4 Prepared by Solvothermal Process, Journal of Power Sources. 2013; 244: 94-100. DOI: https://doi.org/10.1016/j.jpowsour.2013.03.101.

Huang X, He X, Jiang C, and Tian G. Morphology evolution and impurity analysis of LiFePO4 nanoparticles via a solvothermal synthesis process. RSC Advances. 2014; 4 (99): 56074-56083. DOI: https://doi.org/10.1039/C4RA09484KAaaa.

Park KS, Son JT, Chung HT, Kim SJ, Kim CH, Lee CH, and Kim H. Synthesis of LiFePO4 by coprecipitation and microwave heating. Electrochemistry Communications. 2003; 5(10): 839-842. DOI: https://doi.org/10.1016/j.elecom.2003.08.005.

Mauliana M and Zainuri M. Characterization of Lithium Ferro Phosphate Carbon Composite by Solid-State Reaction Methods in Various Temperature Calcination. Proceeding of International Conference on Research, Implementation and Education of Mathematics and Sciences 2015. Yogyakarta: Yogyakarta State University; 2015; P-55-P-60. Available from: https://eprints.uny.ac.id/21054/1/08%20-%20Metatia%20Intan%20Mauliana.pdf.

Subhan A. Fabrikasi dan Karakterisasi Li4Ti5O12 untuk Bahan Anoda Baterai Lithium Keramik. Thesis. Unpublished. Jakarta: Universitas Indonesia; 2011.

Downloads

Published

2018-12-31

How to Cite

Mauliana, M. I. and Zainuri, M. (2018) “The Effect of Temperature Variation on Conductivity Value of Cathode Lithium Ferro Phosphate Carbon Composite”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 8(2), pp. 84–90. doi: 10.26740/jpfa.v8n2.p84-90.

Issue

Section

Articles
Abstract views: 863 , PDF Downloads: 408