Identification of COVID-19 Based on Features Texture Histogram and Gray Level Co-Occurrence Matrix (GLCM) Using K-Means Clustering Methods in Chest X-Ray Digital Images

Authors

  • Heni Sumarti Universitas Islam Negeri Walisongo
  • Qolby Sabrina Osaka University
  • Devi Triana Institut Teknologi Sumatera
  • Fahira Septiani Universitas Islam Negeri Walisongo
  • Tara Puri Ducha Rahmani Universitas Islam Negeri Walisongo

DOI:

https://doi.org/10.26740/jpfa.v13n1.p51-66

Keywords:

COVID-19, CXR, Histogram, GLCM, K-Means Clustering

Abstract

Since the last five years of the COVID-19 outbreak, radiological images, such as CT-Scan and Chest X-Ray (CXR), have become essential in diagnosing this disease. However, limited access to facilities such as CT-Scanners and RT-PCR makes CXR images the primary method for COVID-19 testing. This research aims to improve the accuracy of CXR images in identifying COVID-19 patients based on the texture features: histogram and Gray Level Co-occurrence Matrix (GLCM), using the K-Means Clustering method. This study utilized 150 CXR images, including 75 COVID-19 patients confirmed by RT-PCR tests, and 75 patients with negative cases. The method used were consisted of pre-processing, and texture feature extraction with the seven most influential attributes based on gained information (histogram: standard deviation, entropy, skewness, kurtosis, and GLCM: correlation, energy, homogeneity), as well as classification using K-Means clustering methods. The results showed that the classification’s accuracy, sensitivity, and specification are 92%, 91%, and 93%, respectively. This image processing technique is a promising as well as a complementary tool in diagnosing COVID-19 cases, based on CXR images with lower costs and more reliable results.

References

Wang D et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - Journal of American Medical Association. 2020; 323(11): 1061–1069. DOI: https://doi.org/10.1001/jama.2020.1585.

Xu B et al. Chest CT for detecting COVID-19: A Systematic Review and Meta-Analysis of Diagnostic Accuracy. European Radiology. 2020; 30(10): 5720–5727. DOI: https://doi.org/10.1007/s00330-020-06934-2.

Ozsahin I, Sekeroglu B, Musa MS, Mustapha MT, and Ozsahin DU. Review on Diagnosis of COVID-19 from Chest CT Images Using Artificial Intelligence. Computational and Mathematical Methods in Medicine. 2020; 2020: 9756518. DOI: https://doi.org/10.1155/2020/9756518.

Chan JFW et al. A Familial Cluster of Pneumonia Associated with the 2019 Novel Coronavirus Indicating Person-To-Person Transmission: A Study of a Family Cluster. The Lancet. 2020; 395(10223): 514–523. DOI: https://doi.org/10.1016/S0140-6736(20)30154-9.

Falaschi Z et al. Chest CT Accuracy in Diagnosing COVID-19 During the Peak of the Italian Epidemic: A Retrospective Correlation with RT-PCR Testing and Analysis of Discordant Cases. European Journal of Radiology. 2020; 130: 109192. DOI: https://doi.org/10.1016/j.ejrad.2020.109192.

Shi F et al. Review of Artificial Intelligence Techniques in Imaging Data Acquisition, segmentation and diagnosis for COVID-19. IEEE Reviews in Biomedical Engineering. 2021; 14: 4–15. DOI: https://doi.org/10.1109/rbme.2020.2987975.

Hare SS et al. Validation of the British Society of Thoracic Imaging Guidelines for COVID-19 chest radiograph reporting. Clinical Radiology. 2020; 75(9): 710.e9-710.e14. DOI: https://doi.org/10.1016/j.crad.2020.06.005.

Bai HX et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology. 2020; 296(2), E46–E54. DOI: https://doi.org/10.1148/radiol.2020200823.

Cozzi D et al. Chest X-ray in new Coronavirus Disease 2019 (COVID-19) Infection: Findings and Correlation with Clinical Outcome. La Radiologia Medica. 2020; 125(8): 730–737. DOI: https://doi.org/10.1007/s11547-020-01232-9.

Vancheri SG et al. Radiographic Findings in 240 Patients with COVID-19 Pneumonia: Time-Dependence After the Onset of Symptoms. European Radiology. 2020; 30(11): 6161–6169, 2020, DOI: https://doi.org/10.1007/s00330-020-06967-7.

Maulida N, Paramitha DF, and Sukarno EA. Klasifikasi Kanker Paru-Paru Menggunakan Pengolahan Citra. Jurnal Teknik Pomits. 2013; 2(1): 1-4.

Ng P and Pun CM. Skin Color Segmentation by Texture Feature Extraction and K-mean Clustering. Proceeding of 3rd International Conference on Computational Intelligence, Communication Systems and Networks. 2011: 213–218. DOI: https://doi.org/10.1109/CICSyN.2011.54.

Nugroho A. Klasifikasi Nodul Tiroid Berbasis Ciri Tekstur pada Citra Ultrasonografi. Thesis. Unpublished. Yogyakarta: Universitas Gajah Mada; 2015.

Carreira J and Sminchisescu C. CPMC: Automatic Object Segmentation Using Constrained Parametric Min-cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012; 34(7): 1312–1328. DOI: https://doi.org/10.1109/TPAMI.2011.231.

Hall-Beyer M. GLCM Texture: A Tutorial v. 3.0. Arts Research and Publication. 2017; 2017–03: 75. Available from: http://hdl.handle.net/1880/51900.

Zhao Q, Shi CZ, and Luo LP. Role of the Texture Features of Images in the Diagnosis of Solitary Pulmonary Nodules in Different Sizes. Chinese Journal of Cancer Research. 2014; 26(4): 451–458. DOI: https://doi.org/10.3978/j.issn.1000-9604.2014.08.07.

Witten IH, Frank E, Hall MA, and Pal CJ. Data Mining: Practical Machine Learning Tools and Techniques 4th Edition. Massachusetts: Morgan Kauffman Pub; 2017. DOI: https://doi.org/10.1016/C2015-0-02071-8.

Bimantoro DA and Uyun S. Pengaruh Penggunaan Information Gain untuk Seleksi Fitur Citra Tanah dalam Rangka Menilai Kesesuaian Lahan pada Tanaman Cengkeh. Jiska. 2017; 2(1): 42–52.Available from: https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/21-06/1062.

Kodinariya TM and Makwana PR. Review on Determining Number of Cluster in K-Means Clustering. International Journal of Advance Research in Computer Science Management Studies. 2013; 1(6): 2321–7782.

Younis DB and Younis BMK. Low Cost Histogram Implementation for Image Processing using FPGA. IOP Conference Series Material Science and Engineering. 2020; 745: 012044. DOI: https://doi.org/10.1088/1757-899X/745/1/012044.

Aarthy M and Sumathy P. A Comparison of Histogram Equalization Method and Histogram Expansion. International Journal of Computer Science and Mobile Applications.2014; 2(3): 25–34. Available from: https://www.ijcsma.com/abstract/a-comparison-of-histogram-equalization-method-and-histogram-expansion-95709.html.

Khan W, Kumar S, Gupta N, and Khan N. A Proposed Method for Image Retrieval Using Histogram Values and Texture Descriptor Analysis. International Journal of Soft Computing and Engineering (IJSCE). 2011; I(II): 33–36.

Mapping GL, Zhu Y, and Huang C. An Adaptive Histogram Equalization Algorithm on the Image. Physics Procedia. 2012; 25: 601–608, 2012, DOI: https://doi.org/10.1016/j.phpro.2012.03.132.

Hussain K, Rahman S, Rahman M, and Khaled SM. A Histogram Specification Technique for Dark Image Enhancement Using a Local Transformation Method. IPSJ Transaction on Computer Vision and Applications. 2018; 10(3): 3. DOI: https://doi.org/10.1186/s41074-018-0040-0.

Brown S. Measures of Shape: Skewness and Kurtosis. Available from: https://brownmath.com/stat/shape.htm.

Yamasiro T, et al. Kurtosis and Skewness of Density Histograms on Inspiratory and Expiratory CT Scans in Smokers. COPD Journal of Chronic Obstructive Pulmonary Disease. 2011; 8(1): 13–20. DOI: https://doi.org/10.3109/15412555.2010.541537.

Novitasari DCR, Lubab A, Sawiji A, and Asyhar AH. Application of Feature Extraction for Breast Cancer Using One Order Statistic, GLCM, GLRLM, and GLDM. Advances in Science, Technology and Engineering Systems Journal (ASTES Journal). 2019; 4(4): 115–120. DOI: https://doi.org/10.25046/aj040413.

S. Herlidou-Même et al. MRI Texture Analysis on Texture Test Objects, Normal Brain and Intracranial Tumors. Magnetic Resonance Imaging. 2003; 21(9): 989–993. DOI: https://doi.org/10.1016/S0730-725X(03)00212-1.

Novitasari DCR. Klasifikasi Alzheimer dan Non Alzheimer Menggunakan Fuzzy C-Mean, Gray Level Co-Occurence Matrix dan Support Vector Machine. Jurnal Matematika “MANTIK”. 2018; 4(2): 83–89. DOI: https://doi.org/10.15642/mantik.2018.4.2.83-89.

AndonoPN, Sutojo T, and Muljono. Pengolahan Citra Digital. Yogyakarta: CV. Andi Offset; 2017.

Materka A. Texture Analysis Methodologies for Magnetic Resonance Imaging. Dialogues in Clinical Neuroscience. 2004; 6(2): 243–250. DOI: https://doi.org/10.31887/dcns.2004.6.2/amaterka.

Siew LH, Hodgson RM, and Wood EJ. Texture Measures for Carpet Wear Assessment. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1988; 10(1): 91–105. DOI: https://doi.org/10.1109/34.3870.

Jain AK and Farrokhnia F. Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognition. 1991; 24(12): 1167–1186. DOI: https://doi.org/10.1016/0031-3203(91)90143-S.

Kamiya A, et al. Kurtosis and Skewness Assessments of Solid Lung Nodule Density Histograms: Differentiating Malignant from Benign Nodules on CT. Japanese Journal of Radiology. 2014; 32(1): 14–21. DOI: https://doi.org/10.1007/s11604-013-0264-y.

Tabik S, et al. COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest X-Ray Images. IEEE Journal of Biomedical and Health Informatics. 2020; 24(12): 3595–3605. DOI: https://doi.org/10.1109/JBHI.2020.3037127.

Eisen LA, Berger JS, Hegde A, and Schneider RF. Competency in Chest Radiography: A Comparison of Medical Students, Residents, and Fellows. Journal of General Internal Medicine. 2006; 21(5): 460–465. DOI: https://doi.org/10.1111/j.1525-1497.2006.00427.x.

Weinstock MB, et al. Chest X-Ray Findings in 636 Ambulatory Patients with COVID-19 Presenting to an Urgent Care Center: A Normal Chest X-Ray is no Guarantee Contrast Reaction View Project Pancreatic IRE View project. The Journal of Urgent Care Medicine. 2020; May: 13–18. Available from: https://www.jucm.com/documents/jucm-covid-19-studyepub-april-2020.pdf.

Eko B. Metodologi Penelitian Kedokteran: Sebuah Pengantar. Jakarta: EGC, 2004.

Sacher RA and McPherson RA. Tinjauan Klinis Hasil Pemeriksaan Laboratorium. Jakarta: ECG; 2004.

Saenudin M, Fauzan H, and Adam RI. Classification of Covid-19 Using Feature Extraction GLCM and SVM Algorithm. Manajemen, Teknologi Informatika dan Komunikasi (Mantik). 2021; 5(1): 179–183. DOI: https://doi.org/10.35335/mantik.Vol5.2021.1284.pp179-183.

Harjanti TW, Setiyani H, Trianto J, and Rahmanto Y. Classification of Mint Leaf Types Using Euclidean Distance and K-Means Clustering with Shape and Texture Feature Extraction. Jurnal Tech-E. 2022; 5(2): 116–124. DOI: https://doi.org/10.31253/te.v5i1.940.

Azzahra JF, Sumarti H, and Kusuma HH. Klasifikasi Kasus COVID-19 dan SARS Berbasis Ciri Tekstur Menggunakan Metode Multi-Layer Perceptron. Jurnal Fisika. 2022; 12(1): 16–27. DOI: https://doi.org/10.15294/jf.v12i1.35685.

Downloads

Published

2022-06-29

How to Cite

Sumarti, H., Sabrina, Q. ., Triana, D. ., Septiani, F. and Rahmani, T. P. D. (2022) “Identification of COVID-19 Based on Features Texture Histogram and Gray Level Co-Occurrence Matrix (GLCM) Using K-Means Clustering Methods in Chest X-Ray Digital Images”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 13(1), pp. 51–66. doi: 10.26740/jpfa.v13n1.p51-66.

Issue

Section

Articles
Abstract views: 238 , PDF Downloads: 248