The Identification of the Existence of a Fault Structure on Gravity and Audio Magnetotulleric Data in the Area of Mount Kubing, Belitung

Authors

  • Edi Sanjaya Syarif Hidayatullah State Islamic University of Jakarta
  • Muhammad Nafian Syarif Hidayatullah State Islamic University of Jakarta
  • Suwondo Suwondo Syarif Hidayatullah State Islamic University of Jakarta
  • Muhammad Hasnan Fadillah Syarif Hidayatullah State Islamic University of Jakarta
  • Dias Shafa Syarif Hidayatullah State Islamic University of Jakarta

DOI:

https://doi.org/10.26740/jpfa.v13n1.p81-94

Keywords:

Derivative analysis, Audio Magnetotelutic, gravity method, Magnetotelluric, Reservoir

Abstract

Mount Kubing holds significant potential as a tourist attraction, despite being situated in a tectonic zone prone to faults. Its size and attractions make it suitable for both travel and exploration. Hence, the study has been conducted to identify subsurface structures that can identify the structural fault lines when the mitigation occurred during an earthquake or landslide. The derivative analysis method is used to determine the type of structures. The results of the derivative analysis indicate the direction of the fault structure on a Northwest-Southeast, and Southwest -Northeast that is controlled by two different faults. The fault caused by depression from granitic body and silt with FHD and SVD gravity value around -3 mGal until 1 mGal that showing the indication of normal fault and reverse fault in the research location with depth estimation curve (RAPS) approximately 500 meters in the subsurface of the earth. Whereas in 2D Audio Magnetotelluric modelling, it is identified that the groundwater reservoir layer is at a depth of 70-85 meters below the surface which is recognized as a semi-stressed reservoir with a value of 20-27 mv/nT in complex silt and sandstone.

References

Sukadana IG, Indrastomo FD, Widito P, and Widana KS. Identifikasi Batuan Sumber dan Deliniasi Sebaran Endapan Aluvial Mengandung Monasit di Kabupaten Bangka, Provinsi Kepulauan Bangka Belitung. Prosiding Seminar Geologi Nuklir dan Sumber Daya Tambang. Pusat Pengembangan Geologi Nuklir, Badan Teknologi Nuklir. 2012; 87-98. Available from: https://karya.brin.go.id/id/eprint/990/1/PROSIDING_SUKADANA_PTBGN_2012.pdf.

Franto. Interpretasi Struktur Geologi Regional Pulau Bangka Berdasarkan Citra Shuttle Radar Topography Mission (SRTM) (Interpretation Structure of Regional Geology on Bangka Island with Shuttle Radar Topography Mission (SRTM)). Jurnal Promine. 2015; 3(1): 10-20. Available from: https://journal.ubb.ac.id/index.php/promine/article/download/85/73/.

Telford WM, Geldart LP, and Sheriff RE. Applied Geophysics 2nd Edition. Cambridge: Cambridge University Press; 1990.

Regina, et al. Panas Bumi Sebagai Harta Karun Untuk Menuju Ketahanan Energi. Jurnal Ketahanan Nasional. 2017; 23(2): 217-237. DOI: https://doi.org/10.22146/jkn.26944.

Hidayat N and Basid A. Gravity Anomaly Analysis as a Reference in Determining the Subsurface Geological Structure and Geothermal Potential (Case Study in the Songgoriti Area of Batu City). Jurnal Neutrino. 2011; 4(1): 35-47. DOI: https://doi.org/10.18860/neu.v0i0.1659.

Barkah A and Daud Y. Identification of Structural Geology at the Tangkuban Parahu Geothermal Area, West Java Based on Remote Sensing and Gravity Data. AIP Conference Proceedings. 2021; 2320: 04006. DOI: https://doi.org/10.1063/5.0038809.

Utada H. Electromagnetic Exploration of the Oceanic Mantle. Proceedings of the Japan Academy, Series B. 2015; 91(6): 203–222. DOI: https://doi.org/10.2183/pjab.91.203.

Strack K, Davydycheva S, Hanstein T, Paembonan AY, and Smirnov M. An Array Multi-physics Acquisition System with Focus on Reservoir Monitoring for the Energy Transition. Earth & Environmental Science Research & Reviews. 2022; 5(4): 237-268. Available from: https://www.opastpublishers.com/peer-review/an-array-multiphysics-acquisition-system-with-focus-on-reservoir-monitoring-for-the-energy-transition-4918.html.

Baharuddin and Sidarto. Peta Geologi Lembar Belitung, Sumatera, Skala 1: 250.000. Bandung: Pusat Penelitian dan Pengembangan Geologi; 1995.

Ryka H and Afifah RS. Pemodelan Geologi Bawah Permukaan Bantar Karet, Jawa Barat Menggunakan Metode Gravitasi. Jurnal Geocelebes. 2019; 3(2): 59–65. DOI: https://doi.org/10.20956/geocelebes.v3i2.6689.

Aji DM. Analisa Matematis pada Koreksi Bouguer dan Koreksi Medan Data Gravitasi Satelit Topex dalam Penentuan Kondisi Geologi Studi Kasus Sesar Palu Koro, Sulawesi Tengah. Jurnal Geosaintek, 2019; 5(3): 91-100. DOI: http://dx.doi.org/10.12962/j25023659.v5i3.6100.

Yulistina S. Studi Identifikasi Struktur Geologi Bawah Permukaan untuk Mengetahui Sistem Sesar Berdasarkan Analisis First Horizontal Derivative (FHD), Second Vertical Derivative (SVD), dan 2,5D Forward Modeling di Daerah Manokwari Papua Barat. Jurnal Geofisika Eksplorasi. 2020; 4(2): 62-76. DOI: https://doi.org/10.23960/jge.v4i2.15.

Nafian M, Gunawan B, Permana NR, and Umam R. Identification of the Subsurface Structure of Geothermal Working Area of the Hamiding Mountain, North Maluku Through Land Surface Temperature (LST) Data and Forward Modeling with the Gravity Method. Journal of Natural Sciences & Mathematics Research. 2022; 8(1): 10-19. DOI: https://doi.org/10.21580/jnsmr.2022.8.1.11902.

Yasrifa, et al. Pendugaan Patahan Daerah “Y” Berdasarkan Anomali Gayaberat dengan Analisis Derivative. Jurnal Geofisika Eksplorasi, 2019; 5(1): 75-88. 2019. DOI: https://doi.org/10.23960/jge.v5i1.24.

Triani T, Umam R, and Sismanto S. 3D Modeling of Subsurface Lawanopo Fault in Southeast Sulawesi, Indonesia using Grablox and Its Consequence to Geohazard. The Indonesian Journal of Geography. 2021; 53(1): 67-77. DOI: https://doi.org/10.22146/ijg.50878.

Brandon, et al. Pengolahan Data Landsat dan Gravitasi sebagai Indikasi Panasbumi Daerah Rana Kulan, NTT. JGE (Jurnal Geofisika Eksplorasi), 2021; 7(1): 41-51. DOI: https://doi.org/10.23960/jge.v7i1.108.

Okubo S, Satomura M, Furuya M, Sun W, Matsumoto S, Ueki S, and Watanabe H. Grand Design for the Hybrid Gravity Network Around the Mt. Fuji Volcano. Proceeding of International Symposium on Geodesy, Kanazawa, 2002: 39–40.

Kearey P, Brooks M, and Hill I. An Introduction to Geophysical Exploration (Vol. 4). Hoboken: John Wiley & Sons; 2002.

Lestari AF, et al. Analisis Gaya Berat di Trangkil Gunungpati Semarang. Jurnal Sains dan Edukasi Sains, 2020; 3(2): 53-57. DOI: https://doi.org/10.24246/juses.v3i2p53-57.

Nafian M, Permana NR, Anjani A, Gunawan B, and Sanjaya LA. Identification 2D Modelling of Subsurface Structure Geothermal Prospect Area by Gravity Method: Case Study in Tanuhi, South Kalimantan. Journal of Physics: Conference Series. 2021; 2019: 012081. DOI: https://doi.org/10.1088/1742-6596/2019/1/012081.

Markham BL and Barker JL. Spectral characterization of the LANDSAT Thematic Mapper sensors. International Journal of Remote Sensing. 1985; 6(5): 697–716. DOI: https://doi.org/10.1080/01431168508948492.

Weng Q, Lu D, and Schubring J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment. 2004; 89(4): 467–483. DOI: https://doi.org/10.1016/j.rse.2003.11.005.

Uwiduhaye Jd, Mizunaga H, and Saibi H. Geophysical Investigation using Gravity Data in Kinigi Geothermal Field, Northwest Rwanda. Journal of African Earth Sciences. 2018; 139: 184-192. DOI: https://doi.org/10.1016/j.jafrearsci.2017.12.016.

Atef H, Abd El-Gawad AMS, Zaher MA, and Farag KSI. The Contribution of Gravity Method in Geothermal Exploration of Southern Part of the Gulf of Suez–Sinai Region, Egypt. NRIAG Journal of Astronomy and Geophysics. 2019; 5(2016): 173-185. DOI: http://dx.doi.org/10.1016/j.nrjag.2016.02.005.

Prastowo R, Helmi H, Trianda O, and Umam R. Identification of Slip Surfaces using the Geoelectric Imaging Method in the Kalirejo Area, Kokap District, Yogyakarta, Indonesia. JIPF (Jurnal Ilmu Pendidikan Fisika). 2021; 6(3): 2477-8451. DOI: https://doi.org/10.26737/jipf.v6i3.2072.

Prastowo R, Helmi H, Trianda O, and Umam R. Identification of Andesite Resource Potential in Kalirejo Area, Kokap Sub-District, Kulon Progo using Resistivity Method. Forum Geografi. 2021; 35(1): 74-84. DOI: https://doi.org/10.23917/forgeo.v35i1.13507.

Rosid MS and Siregar H. Determining Fault Structure using First Horizontal Derivative (FHD) and Horizontal Vertical Diagonal Maxima (HVDM) Method: A Comparative Study. AIP Conference Proceedings. 2017; 1862: 030171. DOI: https://doi.org/10.1063/1.4991275.

Azkia HA and Daud Y. Integrated Geophysical and Geological Methods to Identify Structure Existence as a Permeable Zone in a Geothermal Field. AIP Conference Proceedings. 2021; 2320(1): 040012. DOI: https://doi.org/10.1063/5.0038802.

Siombone SH, Maryanto S, and Wiyono. Bouguer Anomaly of Geothermal Reservoir at Tiris Area, Probolinggo, East Java, Indonesia. Journal of Geography, Environment and Earth Science International. 2021; 25(9): 1-18. DOI: https://doi.org/10.9734/JGEESI/2021/v25i930304.

Agyemang VO. Application of Magnetotelluric Geophysical Technique in Delineation of Zones of High Groundwater Potential for Borehole Drilling in Five Communities in the Agona East District, Ghana. Applied Water Science. 2020: 10; 128. DOI: https://doi.org/10.1007/s13201-020-01214-2.

Naibaho T dan Arifin L. Verifikasi Litologi Terhadap Nilai Kerentanan Magnetik di Perairan Bangka Belitung. Jurnal Geologi Kelautan. 2010; 8(1): 37-46. DOI: http://dx.doi.org/10.32693/jgk.8.1.2010.184.

Downloads

Published

2023-06-29

How to Cite

Sanjaya, E., Nafian, M., Suwondo, S., Fadillah , M. H. . and Shafa, D. (2023) “The Identification of the Existence of a Fault Structure on Gravity and Audio Magnetotulleric Data in the Area of Mount Kubing, Belitung”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 13(1), pp. 81–94. doi: 10.26740/jpfa.v13n1.p81-94.

Issue

Section

Articles
Abstract views: 464 , PDF Downloads: 393