Implementation of the Poisson Impedance Inversion to Improve Hydrocarbon Reservoir Characterisation in the Poseidon Field, Browse Basin, Australia

Authors

  • Riky Tri Hartagung Universitas Indonesia
  • Mohammad Syamsu Rosid Universitas Indonesia

DOI:

https://doi.org/10.26740/jpfa.v12n2.p102-114

Keywords:

reservoir characterization, Poisson impedance, Browse basin, Poseidon Field

Abstract

The prediction process of lithology and fluid content is the most important part of reservoir characterization. One of the methods used in this process is simultaneous seismic inversion. In the Poseidon field, Browse Basin, Australia, the parameters generated through simultaneous seismic inversion cannot accurately characterize the reservoir because of the overlapping impedance values between hydrocarbon sand, water sand, and shale, which cause a high level of ambiguity in the interpretation. The Poisson impedance (PI) inversion provides a solution to this problem by rotating the impedance a few degrees through coefficient c. Coefficient c is obtained through the target correlation coefficient analysis by finding the optimum correlation coefficient between the PI and the target log, namely, gamma rays, effective porosity, and resistivity. The results show that the PI gives better outcomes in separating hydrocarbon-saturated reservoir zones. Based on the results of the lithology impedance–gamma rays, the ϕI-effective porosity cross-plot, and the fluid impedance-water saturation (Sw) cross-plot, with optimum correlations of 0.74, 0.91, and 0.82, respectively. The lithology of hydrocarbon-saturated porous sand is at values of LI ≤ 2800 (m/s)(g*cc), ϕI ≤ 5500 (m/s)(g*cc) and FI ≤ 4000 (m/s)(g*cc). The presence of low values for LI, ϕI and FI correlates accurately with the presence of hydrocarbons in the well. Each value of c is then applied to the seismic data. The results show that this method can determine the distribution of gas-saturated porous sand on the seismic inversion section in the northeast–southwest direction.

References

Rollet N, Edwards D, Grosjean E, Palu T, Hall L, Totterdell J, Boreham C, and Murray A. Regional Jurassic sediment depositional architecture, Browse Basin: Implications for petroleum systems. ASEG Extended Abstracts. 2018; 2018(1): 1-8. DOI: https://doi.org/10.1071/ASEG2018abM1_3B.

Conocophillips. Kronos-1 Well Completion Report Volume 2: interpretation data. Houston: Conocophillips Company; 2011: 1-954.

Struckmeyer HIM, Blevin JE, Sayers J, Totterdell JM, Baxter K, and Cathro DL. Structural evolution of the Browse Basin, North West Shelf: new concepts from deep-seismic data. Beaumaris: Petroleum Exploration Society of Australia (PESA); 2016.

Bosch M, Mukerji T, and Gonzalez EF. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. Geophysics. 2010; 75(5): 75A165–75A176. DOI: https://doi.org/10.1190/1.3478209.

Sihotang SM. Identifikasi Persebaran Litologi dan Fluida Hidrokarbon Menggunakan Metode Inversi Seismik Simultan Pada Lapangan Poseidon, Cekungan Browse, Australia. Undergraduate Thesis. Unpublished. Jakarta: Pertamina University; 2020.

Quakenbush M, Shang B, and Tuttle C. Poisson impedance. The Leading Edge. 2006; 25(2): 128-138. DOI: https://doi.org/10.1190/1.2172301.

Pambudi RR, Mulyatno BS, Sarkowi M, Ramdhani E, Dewanto O, and Wibowo RC. Karakterisasi reservoar dan sumur usulan menggunakan metode seismik inversi acoustic impedance dan multiatribut seismik pada lapangan Poseidon, Australia. Prosiding Seminar Nasional Ilmu Teknik dan Aplikasi Industri. 2021; 4: 128-131. Available from: http://sinta.eng.unila.ac.id/prosiding/index.php/ojs/article/view/36.

Rosid MS, Prasetyo BD, Trivianty J, and Purba H. Characterization of hydrocarbon reservoir at field “B”, South Sumatera by using Poisson impedance inversion. Malaysian Journal of Fundamental and Applied Sciences. 2019; 15(3): 472-477. DOI: https://doi.org/10.11113/mjfas.v15n3.1093.

Direzza A and Permana IK. The Application of Poisson Impedance Inversion for Sandstone Reservoir Characterization in the Lower Talang Akar Formation, Case Study Melandong-West Java. Proceeding of AAPG International Conference & Exhibition. Singapore: AAPG. 2012. Available from:

https://www.searchanddiscovery.com/pdfz/documents/2012/41080direzza/ndx_direzza.pdf.html?.

Sørensen MK and Fabricius IL. Clay squirt: Local flow dispersion in shale-bearing sandstones. Geophysics. 2017; 82(1): MR51-MR63. DOI: https://doi.org/10.1190/geo2015-0036.1.

Purba H, Prasetyo BD, Tampubolon RA, Riyadi P, Diria SA, and Basundara AH. Pemisahan litologi dan fluida dengan menggunakan Poisson impedance (Distinguishing Lithology and Fluid Using Poisson Impedance). Lembaran publikasi minyak dan gas bumi. 2017; 51(3): 135-144.

Available from: https://journal.lemigas.esdm.go.id/index.php/LPMGB/article/view/25.

Sumantri I, Haris A, and Riyanto A. Integration of fluid replacement modeling and seismic AVO analysis towards simultaneous seismic inversion to delineate the distribution of Globigerina limestone gas reservoir. IOP Conference Series: Earth and Environmental Science 2020; 481(1): 012051. DOI: https://doi.org/10.17485/IJST/v13i36.770.

Esmaeili S. Influence of Low Frequencies on Seismic Impedance Inversion. Master Thesis. Unpublished. Canada: University of Calgary; 2016.

Inyang NJ, Okwueze EE, and Agbasi OE. Detection of gas sands in the Niger Delta by estimation of Poisson’s Dampening-Factor (PDF) using wireline log data. Geosciences. 2015; 5(1): 46-51. DOI: https://doi.org/10.5923/j.geo.20150501.06.

Zhou Z and Hilterman FJ. A comparison between methods that discriminate fluid content in unconsolidated sandstone reservoirs. Geophysics. 2010; 75(1): B47-B58. DOI: https://doi.org/10.1190/1.3253153.

Tian L, Zhou D, Lin G, and Jiang L. Reservoir prediction using Poisson impedance in Qinhuangdao, Bohai Sea. SEG Technical Program Expanded Abstract. 2010: 2261-2264. DOI: https://doi.org/10.1190/1.3513300.

Kim S, Kim B, Choi J, Byun J, Choi H, and Bang S. Pore fluid estimation using effective workflow of Poisson impedance analysis. Exploration Geophysics. 2020; 51(3): 314-326. DOI: https://doi.org/10.1080/08123985.2019.1690951.

Yu Z, Zhu Z, Wen H, Pan R, and Grenier D. Indicative Factors of Reservoir Sensitivity Based on Pre-stack Inversion. Journal of Engineering Science & Technology Review. 2018; 11(4): 101-110. DOI: https://doi.org/10.25103/jestr.114.13.

Wiyatno OF, Rosid MS, and Purba H. Mapping the Distribution and Characterization of Sandstone Reservoir Using Simultaneous Inversion Method in “OA” Field at Northern Bonaparte Basin. Journal of Physics: Conference Series. 2019; 1351(1): 012045. DOI: http://doi.org/10.1088/1742-6596/1351/1/012045.

Khakhim A. Pengolahan dan Inversi Poisson Impedance Data Seismik 2D Graben Viking Utara, Laut Utara, Norwegia. Undergraduate Thesis. Unpublished. Jakarta: Universitas Pertamina; 2020.

Sidiq AP, Manik HM, and Nainggolan TB. Comparative Study of Seismic Migration Method in Characterizing Oil and Gas Reservoirs in Kangean Block, Bali Sea Using Model Based Acoustic Impedance Inversion. Journal of Tropical Marine Science and Technology. 2019; 11(1): 205-219. DOI: http://dx.doi.org/10.29244/jitkt.v11i1.23028.

Maulana T. Quantitative Seismic Interpretation using Rock Physics Templates-case examples from the Zumba field. Master Thesis. Norway: Norwegian University of Science and Technology; 2016.

Sugiyono. Metode Penelitian Kuantitatif, Kualitatif, Dan R&D. Bandung: Alfabeta; 2017.

Kim S, Lee J, Kim B, and Byun J. Effective workflow of Poisson impedance analysis for identifying oil reservoir with similar resistivity log response to neighboring medias. In SEG Technical Program Expanded Abstracts 2016. 2016: 2851-2855. DOI: https://doi.org/10.1190/segam2016-13856496.1.

Pramanik AG, Singh V, Vig R, Srivastava AK, and Tiwary DN. Estimation of effective porosity using geostatistics and multi attribute transforms: A case study. Geophysics. 2004; 69(2): 352-372. DOI: http://dx.doi.org/10.1190/1.1707054.

Liu D, Gu Z, Liang R, Su J, Ren D, Chen B, Huang C, and Yang C. Impacts of pore-throat system on fractal characterization of tight sandstones. Geofluids. 2020; 9: 1-17. DOI: https://doi.org/10.1155/2020/4941501.

Lai J, Wang G, Wang Z, Chen J, Pang X, Wang S, Zhou Z, He Z, Qin Z, and Fan X. A review on pore structure characterization in tight sandstones. Earth-Science Reviews. 2018; 177: 436-457. DOI: https://doi.org/10.1016/j.earscirev.2017.12.003.

Wu H, Zhao J, and Guo N. Multiscale modeling of compaction bands in saturated high-porosity sandstones. Engineering Geology. 2019; 261: 105282. DOI: http://doi.org/10.1016/j.enggeo.2019.105282.

Li B, Zhang H, Xia Q, Peng J, and Guo Q. Quantitative Evaluation of Tight Sandstone Reservoir Based on Diagenetic Facies—A Case of Lower Silurian Kepingtage Formation in Shuntuoguole Low Uplift, Tarim Basin, China. Frontiers in Earth Science. 2021; 8: 597535. DOI: https://doi.org/10.3389/feart.2020.597535.

Adeyosfi MM and Harris A. Bayesian Theorem Application to Model Reservoir Facies Distribution on Deltaic Depositional Environment, Case Study of Browse Basin. In Journal of Physics: Conference Series. 2021; 2019(1): 012083. DOI: https://doi.org/10.1088/1742-6596/2019/1/012083.

Downloads

Published

2022-12-30

How to Cite

Hartagung, R. T. and Rosid, M. S. (2022) “Implementation of the Poisson Impedance Inversion to Improve Hydrocarbon Reservoir Characterisation in the Poseidon Field, Browse Basin, Australia”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 12(2), pp. 102–114. doi: 10.26740/jpfa.v12n2.p102-114.

Issue

Section

Articles
Abstract views: 395 , PDF Downloads: 364