DOI: http://dx.doi.org/10.26740/jpfa.v8n1.p1-9

Combination of Coprecipitation and Sonochemical Methods in Synthesizing Spinel Hausmannite Nanomaterial

Nurul Hidayat, Ahmad Taufiq, Sunaryono Sunaryono, Samsul Hidayat, Heriyanto Heriyanto, Era Budi Prayekti

Abstract


As it has been widely known that the spectacular characteristics of nanomaterials are strongly dependent on their particle size, crystal structure, and molecular arrangement. The fine structure formation of nanomaterials is inevitable in an attempt of optimizing their promising applications in various fields. One of the notable nanomaterials up to now is hausmannite or Mn3O4. This paper presents a combination of coprecipitation and sonochemical routes in a concurrent way to produce spinel-structured hausmannite nanomaterials. The pH was varied during the synthesis at values of 9, 10, 11, 11.5, and 12. The crystal structure properties were evaluated by X-ray diffractometry (XRD) with the diffraction angle range of 15° - 80°. The functional groups were investigated by Fourier transform infrared (FTIR) spectrometry having wavenumber from 400 to 4000 cm-1. In this study, pH 10 was found to be the best synthesis parameter in producing Mn3O4. Both XRD and FTIR data analyses have agreed on the formation of spinel hausmannite nanomaterials.


Keywords


coprecipitation-sonochemistry; Mn3O4 nanomaterial; crystal structure; molecular structure

Full Text:

PDF

References


Wang MY, Shen T, Wang M, Zhang DE, Tong Z, and Chen J. One-pot Synthesis of α-Fe2O3 Nanoparticles-Decorated Reduced Graphene Oxide for Efficient Nonenzymatic H2O2 Biosensor. Sensors and Actuators B: Chemical. 2014; 190: 645–650. DOI: https://doi.org/10.1016/j.snb.2013.08.091.

Zhang Y, Xie J, Xiao S, Yang Z, Pang P, Bai W, and Gao Y. Facile and Controllable Synthesis of Prussian Blue Nanocubes on TiO2–graphene Composite Nanosheets for Nonenzymatic Detection of Hydrogen Peroxide. Analytical Methods. 2014; 6(24): 9761–9768. DOI: https://doi.org/10.1039/C4AY02418D.

Lin TS and Lee CT. Homostructured ZnO-based Metal-Oxide-Semiconductor Field-Effect Transistors Deposited at Low Temperature by Vapor Cooling Condensation System. Applied Surface Science. 2015; 354(Part A): 71–73. DOI: https://doi.org/10.1016/j.apsusc.2014.12.179.

Zeng F, Pan Y, Yang Y, Li Q, Li G, Hou Z, and Gu G. Facile Construction of Mn3O4-MnO2 Hetero-Nanorods/Graphene Nanocomposite for Highly Sensitive Electrochemical Detection of Hydrogen Peroxide. Electrochimica Acta. 2016; 196: 587–596. DOI: https://doi.org/10.1016/j.electacta.2016.03.031.

Sheikhshoaie I, Ramezanpoura S, and Khatamian M. Synthesis and Characterization of Thallium Doped Mn3O4 as Superior Sunlight Photocatalysts. Journal of Molecular Liquids. 2017; 238: 248-253. DOI: https://doi.org/10.1016/j.molliq.2017.04.088.

Bui PTM, Song JH, Li ZY, Akhtar MS, and Yang OB. Low Temperature Solution Processed Mn3O4 Nanoparticles: Enhanced Performance of Electrochemical Supercapacitors. Journal of Alloys and Compounds. 2017; 694: 560-567. DOI: https://doi.org/10.1016/j.jallcom.2016.10.007.

Umamaheswari R, Akilarasan M, Chen SM, Cheng YH, Mani V, Kogularasu S, Al-Hemaid FMA, Ali MA, and Liu X. One-pot Synthesis of Three-Dimensional Mn3O4 Microcubes for High-Level Sensitive Detection of Head and Neck Cancer Drug Nimorazole. Journal of Colloid and Interface Science. 2017; 505: 1193-1201. DOI: https://doi.org/10.1016/j.jcis.2017.07.006.

Kaczmarczyk J, Zasada F, Janas J, Indyka P, Piskorz W, Kotarba A, and Sojka Z. Thermodynamic Stability, Redox Properties, and Reactivity of Mn3O4, Fe3O4, and Co3O4 Model Catalysts for N2O Decomposition: Resolving the Origins of Steady Turnover. ACS Catalysis. 2016; 6(2): 1235–1246. DOI: https://doi.org/10.1021/acscatal.5b02642.

Taufiq A, Triwikantoro, Pratapa S, and Darminto. Sintesis Partikel Nano Fe3-xMnxO4 Berbasis Pasir Besi dan Karakterisasi Struktur serta Kemagnetannya. Jurnal Nanosains & Nanoteknologi. 2008; 1(2): 68–73.

Konstantinov K, Ng SH, Wang JZ, Wang GX, Wexler D, and Liu HK. Nanostructured PbO Materials Obtained in situ by Spray Solution Technique for Li-Ion Batteries. Journal of Power Sources. 2006; 159(1): 241–244. DOI: https://doi.org/10.1016/j.jpowsour.2006.04.029.

Troia A, Pavese M, and Geobaldo F. Sonochemical Preparation of High Surface Area MgAl2O4 Spinel. Ultrasonics Sonochemistry. 2009; 16(1): 136–140. DOI: https://doi.org/10.1016/j.ultsonch.2008.06.001.

Ohayon E and Gedanken A. The Application of Ultrasound Radiation to the Synthesis of Nanocrystalline Metal Oxide in a Non-Aqueous Solvent. Ultrasonics Sonochemistry. 2010; 17(1): 173–178. DOI: https://doi.org/10.1016/j.ultsonch.2009.05.015.

Hidayat N, Taufiq A, Diantoro M, Nasikhudin, Fuad A, and Hidayat A. Aplikasi Kavitasi Akustik untuk Sintesis Nanomaterial Hetaerolite (ZnMn2O4) serta Karakteristik Geometri Kristalnya. Proceeding of Seminar Nasional MIPA, Universitas Negeri Malang. 2010.

Xu H, Zeiger BW, and Suslick KS. Sonochemical Synthesis of Nanomaterials. Chemical Society Reviews. 2013; 42(7): 2555–2567. DOI: https://doi.org/10.1039/C2CS35282F.

Askarinejad A and Morsali A. Direct Ultrasonic-Assisted Synthesis of Sphere-like Nanocrystals of Spinel Co3O4 and Mn3O4. Ultrasonics Sonochemistry. 2009; 16(1): 124–131. DOI: https://doi.org/10.1016/j.ultsonch.2008.05.015.

Bahtiar S, Taufiq A, Sunaryono, Hidayat A, Hidayat N, Diantoro M, Mufti N, and Mujamilah. Synthesis, Investigation on Structural and Magnetic Behaviors of Spinel M-Ferrite [M = Fe; Zn; Mn] Nanoparticles from Iron Sand. IOP Conference Series: Materials Science and Engineering. 2017; 202: 012052. DOI: https://doi.org/10.1088/1757-899X/202/1/012052.

Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara III WB , Mdleleni MM, and Wong MM. Acoustic Cavitation and Its Chemical Consequences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1999; 357(1751): 335–353. DOI: https://doi.org/10.1098/rsta.1999.0330.

Tholkappiyan R, Naveen AN, Vishista K, and Hamed F. Investigation on Electrochemical Performance of Hausmannite Mn3O4 Nanoparticles by Ultrasonic Irradiation Assisted Co-precipitation Method for Supercapacitor Electrodes. Journal of Taibah University for Science. 2017; article in press. DOI: https://doi.org/10.1016/j.jtusci.2017.07.001.

Li F, Wu J, Qin Q, Li, and Huang X. Facile Synthesis of γ-MnOOH Micro/nanorods and Their Conversion to β-MnO2, Mn3O4. Journal of Alloys and Compounds. 2010; 492(1–2): 339–346. DOI: https://doi.org/10.1016/j.jallcom.2009.11.089.

Hill RJ and Howard CJ. A Computer Program for Rietveld Analysis of Fixed Wavelength X-ray and Neutron Powder Diffraction Patterns. Australian Atomic Energy Commission, Research Establishment, Lucas Heights Research Laboratories; 1986.

Pratapa S, Susanti L, Insany YAS, Alfiati Z, Hartono B, Mashuri, Taufiq A, Fuad A, Triwikantoro, Baqiya MA, Purwaningsih S, Yahya E, and Darminto. XRD Line-broadening Characteristics of M-oxides (M = Mg, Mg-Al, Y, Fe) Nanoparticles Produced by Coprecipitation Method. AIP Conference Proceedings. 2010; 1284(1): 125-128. DOI: https://doi.org/10.1063/1.3515533.

Baykala A, Kavas H, Durmuşa Z, Demira M, Kazanc S, Topkayac R, and Toprak MS. Sonochemical synthesis and Characterization of Mn3O4 Nanoparticles. Central European Journal of Chemistry. 2010; 8(3): 633–638. DOI: https://doi.org/10.2478/s11532-010-0037-8.

Taufiq A, Sunaryono, Putra EGR, Okazawa A, Watanabe I, Kojima N, Pratapa S, and Darminto. Nanoscale Clustering and Magnetic Properties of MnxFe3−xO4 Particles Prepared from Natural Magnetite. Journal of Superconductivity and Novel Magnetism. 2015; 28(9): 2855–2863. DOI: https://doi.org/10.1007/s10948-015-3111-9.

Dhaouadi H, Ghodbane O, Hosni F, and Touati F. Mn3O4 Nanoparticles: Synthesis, Characterization, and Dielectric Properties. ISRN Spectroscopy. 2012; 2012: 894385. DOI: https://doi.org/10.5402/2012/894385.

Menaka, Qamar M, Lofland SE, Ramanujachary KV, and Ganguli AK. Magnetic and Photocatalytic Properties of Nanocrystalline ZnMn2O4. Bulletin of Materials Science. 2009; 32(3): 231–237. https://doi.org/10.1007/s12034-009-0035-7.

Effendi E. Perspektif Baru Kimia Koordinasi Jilid 1. Malang: Bayumedia Publishing; 2007.

Baykal A, Köseoğlu Y, and Şenel M. Low Temperature Synthesis and Characterization of Mn3O4 Nanoparticles. Central European Journal of Chemistry. 2007; 5(1): 169–176. DOI: https://doi.org/10.2478/s11532-006-0064-7.

Rui S, Hong-Jun W, and Shou-Hua F. Solvothermal Preparation of Mn3O4 Nanoparticles and Effect of Temperature on Particle Size. Chemical Research in Chinese Universities. 2012; 28(4): 577–580. Available from: http://www.cjcu.jlu.edu.cn/hxyj/EN/abstract/abstract15584.shtml.

Li Z, Bao H, Miao X, and Chen X. A Facile Route to Growth of γ-MnOOH Nanorods and Electrochemical Capacitance Properties. Journal of Colloid and Interface Science. 2011; 357(2): 286–291. DOI: https://doi.org/10.1016/j.jcis.2011.02.011.



Article Metrics
Abstract view: 69 times
PDF: 20 times

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Jurnal Penelitian Fisika dan Aplikasinya (JPFA)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher

Universitas Negeri Surabaya
Website: https://journal.unesa.ac.id/index.php/jpfa
Email: jpfa@unesa.ac.id

in collaboration with:

Perkumpulan Pendidik IPA Indonesia (PPII)
Website: http://ppii.or.id/
SK Kemkumham: pdf
MoA JPFA-PPII: pdf


Supporting Organization

Himpunan Fisika Indonesia (HFI) cabang Surabaya
Relawan Jurnal Indonesia (RJI)

 

 

Copyright (c) Jurnal Penelitian Fisika dan Aplikasinya (JPFA)

ISSN 2477-1775 (Online) and ISSN 2087-9946 (Print)