Microstructure and Optical Properties Study of Nd-doped BiFeO3 (Ba1-xNdxFeO3) Films on Quartz Substrate

Authors

  • Yofentina Iriani Universitas Sebelas Maret
  • Dianisa Khoirum Sandi Universitas Sebelas Maret
  • Rainisa Nurmawanti Universitas Sebelas Maret
  • Sri Budiawanti Universitas Sebelas Maret
  • Elvinda Bendra Agustina Institut Teknologi dan Sains Nahdlatul Ulama

DOI:

https://doi.org/10.26740/jpfa.v11n2.p148-157

Keywords:

Ba1-xNdxFeO3 thin films, quartz substrate, sol-gel method, microstructure property, optical property

Abstract

Bismuth ferrite oxide (BFO), due to its remarkable properties, has become one of the most attractive multiferroic materials to be extensively studied. BFO doped with various materials, including Neodymium (Nd), could improve its properties that apply to numerous electronic devices. However, the studies related to the properties of Nd-doped BFO (Ba1-xNdxFeO3) thin films on a quartz substrate, especially the optical properties, are relatively scarce. This study aimed to investigate the microstructure and optical properties of the Nd-doped BFO (BNFO) as the variation of the Nd concentrations. The BNFO thin films with Nd concentrations of 0.05 (BNFO5); 0.1 (BNFO10); and 0.2 (BNFO20) have been deposited on the quartz substrates via the sol-gel method and using spin coating. The films were annealed at 600 °C for 1.5 h. The XRD result of the BNFO films revealed a single phase of BFO with a cubic structure. The lattice constants and volume cells of the films declined with more Nd. Meanwhile, the crystallite size and lattice strain changed due to the change in the Nd number. Additionally, the morphology images showed the pores on the films’ surface and the different film thicknesses of each BNFO film. From the optical characterization, the transmittance spectra of the BNFO films tended to rise as the more Nd amount doped, in which the BNFO20 had the highest transmittance. The BNFO10 had the highest refractive index, followed by the BNFO5 and BNFO20. Contrarily, the BNFO20 had the highest extinction coefficient and  spectra, followed by the BNFO5 and BNFO10. Further, the bandgap values of the BNFO5, BNFO10, and BNFO20 were 2.75, 2.85, and 2.64 eV, respectively. Accordingly, due to the highest Nd amount that most impacted its microstructure, the BNFO20 exhibited the lowest bandgap value compared to the other films that are good for photovoltaic applications.

Author Biographies

Yofentina Iriani, Universitas Sebelas Maret

Physics Department, Universitas Sebelas Maret, Indonesia

Dianisa Khoirum Sandi, Universitas Sebelas Maret

Physics Department, Universitas Sebelas Maret, Indonesia

Rainisa Nurmawanti, Universitas Sebelas Maret

Physics Department, Universitas Sebelas Maret, Indonesia

Sri Budiawanti, Universitas Sebelas Maret

Physics Education Department, Universitas Sebelas Maret, Indonesia

Elvinda Bendra Agustina, Institut Teknologi dan Sains Nahdlatul Ulama

Institut Teknologi dan Sains Nahdlatul Ulama, Indonesia

References

Tomczyk M, Stroppa DG, Reaney IM and Vilarinho PM. Growth of BiFeO3 thin films by chemical solution deposition: the role of electrodes. Physical Chemistry Chemical Physics. 2017; 19(22); 14337-14344. DOI: https://doi.org/10.1039/C7CP01842H.

Maleki H, Falahatnezhad S and Taraz M. Influence of Thickness on the Structural, Optical and Magnetic Properties of Bismuth Ferrite Thin Films. Journal of Superconductivity and Novel Magnetism. 2018; 31(10); 3217-3222. DOI: https://doi.org/10.1007/s10948-018-4584-0.

Tan KH, Chen YW, Van CN, Wang H, Chen JW, Lim FS, Chew KH, Zhan Q, Wu CL, Chai SP, Chu YH and Chang WS. Energy Band Gap Modulation in Nd-doped BiFeO3/SrRuO3 Heteroepitaxy for Visible Light Photoelectrochemical Activity, ACS Applied Materials and Interfaces. 2019; 11(1); 1655-1664. DOI: https://doi.org/10.1021/acsami.8b17758

Ukai Y, Yamazaki S, Kawae T and Morimoto A. Polarization-Induced Photovoltaic Effects in Nd-Doped BiFeO3 Ferroelectric Thin Films. Japanese Journal of Applied Physics. 2012; 51(9S1); 09LE10. DOI: https://doi.org/10.1143/JJAP.51.09LE10.

Shi T, Wang J, Yan W, Shao X and Hou ZL. Enhanced photovoltaic property based on reduced leakage current and band gap in Nd-doped BiFeO3 films. Materials Research Express. 2018; 6(8); 086426. DOI: https://doi.org/10.1088/2053-1591/ab1b8b.

Zhang HR, Kalantari K, Marincel DM, Trolier-McKinstry S, MacLaren I, Ramasse QM, Rainforth W and Reaney IM. The effect of substrate clamping on the paraelectric to antiferroelectric phase transition in Nd-doped BiFeO3 thin films. Thin Solid Films. 2016; 616; 767-772. DOI: https://doi.org/10.1016/j.tsf.2016.10.004.

Zhang Y, Wang Y, Qi J, Tian Y, Sun M, Zhang J, Hu T, Wei M, Liu Y and Yang J. Enhanced Magnetic Properties of BiFeO3 Thin Films by Doping: Analysis of Structure and Morphology. Nanomaterials. 2018; 8(9); 711. DOI: https://doi.org/10.3390/nano8090711.

Meng C, Guoqiang T, Xu X, Ao X and Huijun R. Preparation of Nd-doped BiFeO3 films and their electrical properties. Physica B: Condensed Matter. 2012; 407(17) 3360-3363. DOI: https://doi.org/10.1016/j.physb.2012.04.038.

Zhang J, Ma P, Shi T and Shao X. Nd-Cr co-doped BiFeO3 thin films for photovoltaic devices with enhanced photovoltaic performance. Thin Solid Films. 2020; 698; 137852. DOI: https://doi.org/10.1016/j.tsf.2020.137852.

Thang DV, Oanh LTM, Khang NC, Hung NM, Bich DD, Thao DTX and Minh NV, Structural, magnetic and electric properties of Nd and Ni co-doped BiFeO3 materials. AIMS Materials Science. 2017; 4(4); 982-990. DOI: https://doi.org/10.3934/matersci.2017.4.982.

Xue X, Tan G, Liu W and Hao H. Study on pure and Nd-doped BiFeO3 thin films prepared by chemical solution deposition method. Journal of Alloys and Compounds. 2014; 604; 57-65. DOI: https://doi.org/10.1016/j.jallcom.2014.03.122.

Li X, Wang X, Li Y, Mao W, Li P, Yang T, and Yang J. Structural, morphological and multiferroic properties of Pr and Co co-substituted BiFeO3 nanoparticles. Materials Letters. 2013; 90; 152-155. DOI: https://doi.org/10.1016/j.matlet.2012.09.038.

Peng YT, Chiou SH, Hsiao CH, Ouyang CH, and Tu C. Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3. Scientific Reports. 2017; 7; 45164. DOI: https://doi.org/10.1038/srep45164.

Bai L, Sun M, Ma W, Yang J, Zhang J, and Liu Y. Enhanced Magnetic Properties of Co-Doped BiFeO3 Thin Films via Structural Progression. Nanomaterials. 2020; 10; 1798. DOI: https://doi.org/10.3390/nano10091798.

Ma Z, Liu H, Wang L, Zhang F, Zhu L, and Fan S. Phase transition and multiferroic properties of Zr-doped BiFeO3 thin films. Journal of Materials Chemistry C. 2020; 8(48); 17307-17317. DOI: https://doi.org/10.1039/D0TC04593D.

Chang WS, Tu CS, Chen PY, Chen CS, Lin CY, Feng KC, Hsieh YL, and Huang YH. Effects of Fe 3d–O 2p and Bi 6sp–O 2p orbital hybridizations in Nd doped BiFeO3 ceramics. Journal of Alloys and Compounds. 2017; 710; 670-679. DOI: https://doi.org/10.1016/j.jallcom.2017.03.329.

Huong NT, Lee S, Atabaev TS, Kurisu M, and Hong NH. Rare Earth-Doped BiFeO3Thin Films: Relationship between Structural and Magnetic Properties. Advances in Condensed Matter Physics. 2015; 2015; 371802. DOI: https://doi.org/10.1155/2015/371802.

Iriani Y, Megasari NH, and Nurosyid F. Pengaruh Suhu Annealing terhadap Struktur Mikro dan Sifat Optik Lapisan Bismuth Ferrite (BiFeO3). Indonesian Journal of Applied Physics. 2019; 9(1); 41-45. DOI: https://doi.org/10.13057/ijap.v9i01.33262.

Shirahata Y and Takeo O. Characterization and Photovoltaic Properties of BiFeO3 Thin Films. Coatings. 2016; 6(4); 68. DOI: https://doi.org/10.3390/coatings6040068.

Santika M, Iriani Y, and Suryana R. Influence of Thickness on Optical Properties of Bismuth Ferrite Layers Grown on Quartz Substrates by Chemical Solution Deposition. Materials Today: Proceedings. 2019; 13(1); 82-86. DOI: https://doi.org/10.1016/j.matpr.2019.03.192.

Agustina EB, Iriani Y, and Suryana R. Effect of Pre-Annealing and Annealing Temperature on Microstructural and Optical Properties of Multiferroic BiFeO3 Thin Films Prepared by Chemical Solution Deposition (CSD). Journal of Physics: Conference Series. 2019; 1397; 012002. DOI: https://doi.org/10.1088/1742-6596/1397/1/012002.

Monshi A, Foroughi MR, and Monshi MR. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering. 2012; 2(3); 154-160. DOI: https://doi.org/10.4236/wjnse.2012.23020.

Kumari A, Kumari K, Ahmed F, Alshoaibi A, Alvi PA, Dalela S, Ahmad MM, Aljawfi RN, Dua P, Vij A, and Kumar S. Influence of Sm Doping on Structural, Ferroelectric, Electrical, Optical and Magnetic Properties of BaTiO3. Vacuum. 2021; 184; 109872. DOI: https://doi.org/10.1016/j.vacuum.2020.109872.

Deng X, Zeng Z, Gao R, Wang Z, Chen G, Cai W, and Fu C. Study of Structural, Optical and Enhanced Multiferroic Properties of Ni Doped BFO Thin Films Synthesized By Sol-Gel Method. Journal of Alloys and Compounds. 2020; 831; 154857. DOI: https://doi.org/10.1016/j.jallcom.2020.154857.

Ranjbar S, Ranjbar A, Behdani M, and Roknabadi MR. Fabrication of Bismuth Titanate (Bi4Ti3O12) Thin Films: Effect of Annealing Temperature on their Structural and Optical Properties. Scientia Iranica. 2018; 26(3); 1990-1996. DOI: https://doi.org/10.24200/sci.2018.51061.1992.

Swanepoel R. Determination of The Thickness and Optical Constants of Amorphous Silicon. Journal of Physics E: Scientfic Instruments. 1983; 16(12); 1214-1222. DOI: https://doi.org/10.1088/0022-3735/16/12/023.

Swanepoel R. Determination of Surface Roughness and Optical Constants of Inhomogeneous Amorphous Silicon Films. Journal Physics E: Scientific Instruments. 1984; 17(10); 896-903. DOI: https://doi.org/10.1088/0022-3735/17/10/023.

Sharma HB. Structural and Optical Properties of Sol-Gel Derived Barium Titanate Thin Film. International Journal of Modern Physics B. 2007; 21(11); 1837–1849. DOI: https://doi.org/10.1142/S0217979207037028.

Wemple SH and DiDomenico M. Optical Dispersion and the Structure of Solids. Physical Review Letters. 1969; 23(20); 1156-1160. DOI: https://doi.org/10.1103/PhysRevLett.23.1156.

Wemple SH and DiDomenico M. Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials. Physical Review B. 1971; 3(4); 1338-1351. DOI: https://doi.org/10.1103/PhysRevB.3.1338.

Tu CS, Chen PY, Chen CS, Lin CY and Schmidt VH. Tailoring Microstructure and Photovoltaic Effect in Multiferroic Nd-Substituted BiFeO3 Ceramics by Processing Atmosphere Modification. Journal of the European Ceramic Society. 2018; 38(4); 1389-1398. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.11.025.

Downloads

Published

2021-12-30

How to Cite

Iriani, Y., Sandi, D. K., Nurmawanti, R., Budiawanti, S. and Agustina, E. B. (2021) “Microstructure and Optical Properties Study of Nd-doped BiFeO3 (Ba1-xNdxFeO3) Films on Quartz Substrate”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 11(2), pp. 148–157. doi: 10.26740/jpfa.v11n2.p148-157.

Issue

Section

Articles
Abstract views: 267 , PDF Downloads: 145