Finite Element Analysis of Patient Specific Bone Plate with Ti6Al4V Material Selection

Authors

  • Talitha Asmaria Indonesian Institute of Science
  • Dita Ayu Mayasari Universitas Dian Nuswantoro
  • Safarudin Ramdhani Universitas Diponegoro
  • Muhammad Satrio Utomo Indonesian Institute of Science
  • Daniel Panghihutan Malau Indonesian Institute of Science
  • Dhyah Annur Indonesian Institute of Science
  • Muhammad Ikhlasul Amal Indonesian Institute of Science
  • Ika Kartika Indonesian Institute of Science

DOI:

https://doi.org/10.26740/jpfa.v11n1.p83-93

Keywords:

finite element analysis, bone plate, implant, titanium alloy

Abstract

A patient-specific implant is a designed implant that considers the needs of a specialized patients condition. In several surgical cases, the implant design needs to be adjusted based on the patient bones surface to suit the bone morphometry. This study aims to conduct the finite element analysis to investigate the stress distribution alongside the plate to consider clinical implementation. A bone plate has been designed following an adult pelvic bone shape for the pelvic fractures clinical case management. An FEA was accomplished to analyse the implant designs performance and estimate the installations clinical failures before the manufacturing process. The FEA calculation achieved the highest number of von misses stresses (VM) on the pelvic bone plate by 3.616 MPa. The obtained VM number on the simulation is smaller than the yield strength of Ti6Al4V. It concludes that the customized iliac plates design using Ti6Al4V can have excellent mechanical strength and can withstand the loading. Additional similar simulation using another software strengthen the results.

Author Biographies

Talitha Asmaria, Indonesian Institute of Science

Research Centre for Metallurgy and Material, Indonesian Institute of Science, Indonesia

Dita Ayu Mayasari, Universitas Dian Nuswantoro

Faculty of Engineering, Universitas Dian Nuswantoro, Indonesia

Safarudin Ramdhani, Universitas Diponegoro

Postgraduate Programme of Mechanical Engineering, Universitas Diponegoro

Muhammad Satrio Utomo, Indonesian Institute of Science

Research Centre for Metallurgy and Material, Indonesian Institute of Science, Indonesia

Daniel Panghihutan Malau, Indonesian Institute of Science

Research Centre for Metallurgy and Material, Indonesian Institute of Science, Indonesia

Dhyah Annur, Indonesian Institute of Science

Research Centre for Metallurgy and Material, Indonesian Institute of Science, Indonesia

Muhammad Ikhlasul Amal, Indonesian Institute of Science

Research Centre for Metallurgy and Material, Indonesian Institute of Science, Indonesia

Ika Kartika, Indonesian Institute of Science

Research Centre for Metallurgy and Material, Indonesian Institute of Science, Indonesia

References

Kim NH, Sankar BV, and Kumar AV. Introduction to Finite Element Analysis and Design. Hoboken: John Wiley & Sons; 2018.

Kurowski PM. Finite Element Analysis for Design Engineers. Canada: SAE International; 2017.

Reddy JN. An Introduction to The Finite Element Method. New York: McGraw-Hill Education; 2005.

Manam NS, Harun WSW, Shri DNA, Ghani SAC, Kurniawan T, Ismail MH, and Ibrahim MHI. Study of Corrosion in Biocompatible Metals for Implants: A Review. Journal of Alloys and Compounds. 2017; 701: 698-715. DOI: https://doi.org/10.1016/j.jallcom.2017.01.196.

Zein NN, Hanouneh IA, Bishop PD, Samaan M, Eghtesad B, Quintini C, Miller C, Yerian L, and Klatte R. Three-Dimensional Print of A Liver for Preoperative Planning in Living Donor Liver Transplantation. Liver Transplantation. 2013; 19(12): 1304-1310. DOI: https://doi.org/10.1002/lt.23729.

Elias CN, Fernandes DJ, Souza FMD, Monteiro EDS, and Biasi RSD. Mechanical and Clinical Properties of Titanium and Titanium-Based Alloys (Ti G2, Ti G4 Cold Worked Nanostructured and Ti G5) for Biomedical Applications. Journal of Materials Research Technology. 2019; 8(1): 1060-1069. DOI: https://doi.org/10.1016/j.jmrt.2018.07.016.

Rubo JH and Souza EAC. Finite-Element Analysis of Stress on Dental Implant Prosthesis. Clinical Implant Density and Related Research. 2010; 12(12): 105-113. DOI: https://doi.org/10.1111/j.1708-8208.2008.00142.x.

Loures FB, Góes RFDA, Palma IMD, Labronici PJ, Granjeiro JM, and Olej B. Anthropometric Study of The Knee and Its Correlation With The Size of Three Implants Available for Arthroplasty. Revista Brasileira De Ortopedia. 2016; 51(3): 282-289. DOI: https://doi.org/10.1016/j.rboe.2015.07.009.

Uehara K, Kadoya Y, Kobayashi A, Ohashi H, and Yamano Y. Anthropometry of The Proximal Tibia to Design A Total Knee Prosthesis for The Japanese Population. The Journal of Arthroplasty. 2002; 17(8): 1028–1032. DOI: https://doi.org/10.1054/arth.2002.35790.

Karimi E, Zandi R, Norouzian M, and Birjandinejad A. Correlation of Anthropometric Measurements of Proximal Tibia in Iranian Knees with Size of Current Tibial Implants. The Archives of Bone and Joint Surgery. 2019; 7(4): 339-345. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686072/.

Vaidya SV, Ranawat CS, Aroojis A, and Laud NS. Anthropometric Measurements to Design Total Knee Prostheses for The Indian Population. The Journal of Arthroplasty. 2000; 15(1): 79–85. DOI: https://doi.org/10.1016/S0883-5403(00)91285-3.

Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, and Phan K. The Utility of 3D Printing for Surgical Planning and Patient-Specific Implant Design for Complex Spinal Pathologies: Case Report. Journal of Neurosurgery Spine. 2017; 26(4): 513–518. DOI: https://doi.org/10.3171/2016.9.SPINE16371.

Mohammed MI, Fitzpatrick AP, and Gibson I. Customised Design And Development of Patient Specific 3D Printed Whole Mandible Implant. DesTech Conference Proceeding. 2017; 2(2): 104-111. DOI: https://doi.org/10.18502/keg.v2i2.602.

Iqbal T, Shi L, Wang L, Liu Y, Li D, Qin M, and Jin Z. Development of Finite Element Model for Customized Prostheses Design for Patient with Pelvic Bone Tumor. Proceedings of The Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine. 2017; 231(6): 525–533. DOI: https://doi.org/10.1177/0954411917692009.

Kumhar V and Sarda A. Finite Element Analysis of Implant Design Used in Elbow Arthroplasty Process. International Journal of Computer Aided Engineering and Technology. 2019; 11(1): 87–110. DOI: https://doi.org/10.1504/IJCAET.2019.096729.

Priya MA, Snekhalatha U, Mahalakshmi R, Dhivya T, and Gupta N. Design and Analysis of Customized Hip Implant Using Finite Element Method. Artificial Intelligence Evolutionary Computations in Engineering Systems. 2020; 515–525. DOI: https://doi.org/10.1007/978-981-15-0199-9_44.

Cheong VS, Fromme P, Coathup MJ, Mumith A, and Blunn GW. Partial Bone Formation in Additive Manufactured Porous Implants Reduces Predicted Stress and Danger of Fatigue Failure. Annals of Biomedical Engineering. 2020; 48(1): 502–514. DOI: https://doi.org/10.1007/s10439-019-02369-z.

Wang J, Ma JX, Lu B, Bai HH, Wang Y, and Ma XL. Comparative Finite Element Analysis of Three Implants Fixing Stable and Unstable Subtrochanteric Femoral Fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthopaedics & Traumatol Surgery Reserach. 2019; 106(1): 95–101. DOI: https://doi.org/10.1016/j.otsr.2019.04.027.

Ribeiro LF, Carvalho MAD, Maior BSS, and Cury AADB. Biomechanical Evaluation of Different Implant Positions when Restoring the Maxilla : A Finite Element Analysis. International Journal of Advanced Engineering Research and Science. 2020; 7(2): 137–143. DOI: https://doi.org/10.22161/ijaers.72.19.

Memari Y, Fattahi P, Fattahi A, Eskandarion S, and Rakhshan V. Finite Element Analysis of Stress Distribution Around Short and Long Implants in Mandibular Overdenture Treatment. Dental Research Journal. 2020; 17(1): 25–33. DOI: https://doi.org/10.4103/1735-3327.276231.

Khare N, Sharma G, and Modi YK. Finite Element Analysis of Patient-Specific Femur Bone for Synthetic Biomaterials. Advances in Mechanical Engineering: Select Proceedings of ICRIDME. 2020; 649-659. DOI: https://doi.org/https://doi.org/10.1007/978-981-15-0124-1_58.

Utomo MS, Amal MI, Supriadi S, Malau D, Annur D, and Pramono AW. Design of Modular Femoral Implant Based on Anthropometry of Eastern Asian. AIP Conference Proeedings. 2019; 2088: 020033. DOI: https://doi.org/10.1063/1.5095285.

Malau DP, Utomo MS, Annur D, Asmaria T, Prabowo Y, Rahyussalim AJ, Supriadi S, and Amal MI. Finite Element Analysis of Porous Stemmed Hip Prosthesis for Children. AIP Conference Proeedings. 2019; 2193: 050020. DOI: https://doi.org/10.1063/1.5139393.

Asmaria T, Annur D, Utomo MS, Sari AK, Malau DP, Prabowo Y, Rahyusalim AJ, and Amal MI. Validation of 3D Models using Template Matching for Implant Planning. 16th International Conference of Quality in Research (QIR): International Symposium on Electrical and Computer Engineering. IEEE. 2019; 1-4. DOI: https://doi.org/10.1109/QIR.2019.8898275.

Asmaria T, Rahmi R, Utomo MS, Annur D, Malau DP, Amal MI, and Kartika I. Deteksi Tepi untuk Validasi Model Tiga Dimensi Tulang Panggul pada Perencanaan Desain Implan. Widyariset. 2020. 6(1): 51-61. DOI: http://dx.doi.org/10.14203/widyariset.6.1.2020.51-61.

Asmaria T, Rahmi R, Utomo MS, Lestari FP, Erryani A, Fathoni P, Nugraha T, and Kartika I. The 3D Printing in Material Research and Medical Physics Education and Its Accuracy Study. Jurnal Penelitian dan Pengembangan Pendidikan Fisika. 2020; 6(2): 227-236. DOI: https://doi.org/10.21009/1.06209.

Dalstra M and Huiskes R. Load Transfer Across The Pelvic Bone. Journal of Biomechanics. 1995; 28(6): 715–724. DOI: https://doi.org/10.1016/0021-9290(94)00125-N.

Guliev BG, Komyakov BK, Talyshinskiy AE, and Stetsik EO. Using of A Dismountable 3d-Model of The Collecting System with Color Segmentation to Improve The Learning Curve of Residents. Urologiia. 2019; 6: 21–25. DOI: https://doi.org/10.18565/urology.2019.6.21-25.

Thakran S, Chatterjee S, Singhal M, Gupta RK, and Singh A. Automatic Outer and Inner Breast Tissue Segmentation Using Multi-Parametric MRI Images of Breast Tumor Patients. PLoS One. 2018; 13(1): e0190348. DOI: https://doi.org/10.1371/journal.pone.0190348.

Molnár I and Morovič L. Design and Manufacture of Orthopedic Corset Using 3D Digitization and Additive Manufacturing. IOP Conference Series: Materials Science and Engineering. 2018; 448: 012058. DOI: https://doi.org/10.1088/1757-899X/448/1/012058.

Downloads

Published

2021-07-23

How to Cite

Asmaria, T., Mayasari, D. A., Ramdhani, S., Utomo, M. S., Malau, D. P. ., Annur, D., Amal, M. I. and Kartika, I. (2021) “Finite Element Analysis of Patient Specific Bone Plate with Ti6Al4V Material Selection”, Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 11(1), pp. 83–93. doi: 10.26740/jpfa.v11n1.p83-93.

Issue

Section

Articles
Abstract views: 586 , PDF Downloads: 399