Implementation of SVM and GLDA for Gap Analysis on Mobile JKN
Keywords:
Gap Analysis, GLDA, Mobile JKN, SVM, User ReviewsAbstract
This study aims to analyze user perceptions of the Mobile JKN application developed by BPJS Kesehatan through sentiment analysis, topic modeling, and service quality gap analysis (SERVQUAL). Sentiment analysis was conducted using the Support Vector Machine (SVM) algorithm with linear and RBF kernels. The classification results, based on an 80:20 data split, indicate that the majority of user reviews express negative sentiment—2,784 reviews using the linear kernel and 2,847 using the RBF kernel—followed by positive and neutral sentiments. These findings suggest a general dissatisfaction among users regarding the application’s performance. Topic modeling was performed using the Guided Latent Dirichlet Allocation (GLDA) method, successfully grouping reviews into five main topics aligned with the SERVQUAL dimensions: tangibles, assurance, empathy, reliability, and responsiveness. The empathy topic appeared most frequently, while responsiveness was the least represented. The GLDA model achieved a coherence score of 0.64 and a UMass score of -1.99, indicating the model’s interpretability and consistency. Finally, the dimension-by-dimension gap analysis revealed that the assurance dimension had the smallest gap (-0.06), while the reliability dimension had the largest gap (-0.74). The overall SERVQUAL gap score was 0.11, highlighting a notable disparity between user expectations and their actual experiences. These results underline the need for targeted improvements in several service aspects of the Mobile JKN application.
References
Agustriani, N. H., & Sutabri, T. (2023). Analisis Pelayanan Aplikasi SIDEMANG Menggunakan Metode Servqual Pada Dinas Kominfo Kota Palembang. Jurnal JUPITER, XV, 883-894.
Aldisa, R. T., & Maulana, P. (2022, Juni). Analisis Sentimen Opini Masyarakat Terhadap Vaksinasi Booster COVID-19Dengan Perbandingan Metode Naive Bayes, Decision Treedan SVM. Building of Informatics, Technology and Science (BITS), IV, 106-109. doi:10.47065/bits.v4i1.1581
Bahri, S., Amri, A., & Siregar, A. A. (2022). ANALISIS KUALITAS PELAYANAN APLIKASI MOBILE JKN BPJS KESEHATAN MENGGUNAKAN METODE SERVICE QUALITY (SERVQUAL). Industrial Engineering Journal, XI, 1-7. doi:https://doi.org/10.53912/iej.v11i2.837
Fathoni, M. F., Puspaningrum, E. Y., & Sihananto, A. N. (2024). Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM. Modem : Jurnal Informatika dan Sains Teknologi, 62-76. doi:https://doi.org/10.62951/modem.v1i3.112
Gifari, O. I., Adha, M., Hendrawan, I. R., & Durrand, F. F. (2022). Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine. JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY), II, 36-40.
Iqbal, R. (2021). PENERAPAN CUSTOMER SATISFACTION INDEX DAN ANALISIS GAP PADA JASA WEDDING MONANG ENTERTAINMENT. Jurnal Teknologi dan Sistem Informasi (JTSI), II, 102-108.
Irawati, D. S., & Pibriana, D. (2021, September). Perbandingan Kualitas Dua E-Commerce Terhadap Kepuasan Pengguna Menggunakan Metode Servqual. JTSI, II, 251-264.
Kraus, S., Schiavone, F., Pluzhnikova, A., & Invernizzi, A. C. (2021). Digital transformation in healthcare: Analyzing the current state-of-research. Journal of Business Research, CXXIII(C), 557-567. doi:10.1016/j.jbusres.2020.10.030
Kusuma, J. F., & Suyatno, D. F. (2023). Analisis Tingkat Kepuasan Pengguna Menggunakan Servqual dan Rekomendasi Perbaikan Menggunakan Pieces Framework pada Aplikasi PeduliLindungi. Journal of Informatics and Computer Science (JINACS), IV, 369-379. doi:https://doi.org/10.26740/jinacs.v4n04.p362-372
Primin, B., & Wibowo, A. P. (2023, May). Implementasi Aplikasi Berbasis Mobile Untuk Pelayanan Jasa Kesehatan. https://doi.org/10.30591/jpit.v8i2.5076, II, 119-125. doi:https://doi.org/10.30591/jpit.v8i2.5076
Silalahi, B. S., & Kaunang, F. J. (2022). Analisis Service Quality pada Aplikasi DANA berdasarkan Sudut Pandang Pelanggan di Daerah Bandung Menggunakan Metode Servqual dan Model Kano. TeIKa, XII, 121-133. doi:https://doi.org/10.36342/teika.v12i02.2957
Silvia, G. (2022). ANALISIS KUALITAS LAYANAN PENGGUNA WEBSITE E-LEARNING DENGAN METODE SERVQUAL (STUDI KASUS SPADA DIKTI PROGRAM KAMPUS MERDEKA). MDP STUDENT CONFERENCE (MSC) (pp. 526-537). Palembang: MDP Student Conference 2022.
Tjikdaphia, N. B., & Sulastri. (2023). Comparison of NBC, SVM, KNN Classification Results in Sentiment Analysis of Mobile JKN. JURTEKSI (Jurnal Teknologi dan Sistem Informasi), IX, 665-672.
Trivusi. (2022, September 16). Data Splitting: Pengertian, Metode, dan Kegunaannya. Retrieved from trivusi.web.id: https://www.trivusi.web.id/2022/08/data-splitting.html
Venugopalan, M., & Gupta, D. (2022). An enhanced guided LDA model augmented with BERT based semantic strength for aspect term extraction in sentiment analysis. Knowledge-Based Systems, CCXLVI, 1-16. doi:https://doi.org/10.1016/j.knosys.2022.108668
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Balqis Nur Aura Shaviradilla, I Kadek Dwi Nuryana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract views: 51



