Implementation of Time Series Method in Drug Sales Forecasting at XYZ Pharmacy Using a Dashboard on the "Riycast" Website
Keywords:
Drug sales forecasting, LSTM (Long Short-Term Memory), Pharmacy inventory management, Time series analysis, Web-based dashboardAbstract
Apotek XYZ faces significant challenges in drug stock management due to unpredictable seasonal demand fluctuations, particularly during flu season, which risks stock shortages or excess inventory. This study implements a Long Short-Term Memory (LSTM) method for time-series-based drug sales forecasting and develops the "Riycast" web dashboard as an interactive stock management solution. Historical daily sales data (January 2021–December 2024) for 10 key drugs (e.g., multivitamins, flu medications) were processed through CRISP-DM stages including data cleansing, normalization, seasonal decomposition, and hyperparameter tuning via grid search. The LSTM model captured seasonal patterns and trends with variable accuracy (RMSE 0.11279–0.31552), peaking for Ultraflu and Vitalong Z Sinc. The Riycast dashboard built with Flask
(backend), React.js (frontend), and MySQL features real-time sales data input, interactive prediction visualizations, historical trend analysis, and automatic surge alerts (>100 units). Implementation boosted stock management efficiency by 30% in trials, reduced stockout risk by 25%, and enabled data-driven decisionmaking at Apotek XYZ.
References
Afiya, N., Permadi, Y., Rahmatullah, S., & Ningrum, W. (2022). ANALISIS PENGELOLAAN
MANAJEMEN LOGISTIK OBAT DI INSTALASI FARMASI RUMAH SAKIT QIM
BATANG TAHUN 2021. Jurnal Ilmiah Jophus: Journal of Pharmacy UMUS, 3(2), 138–145.
Ananda, Y. T. (2023). MANAJEMEN PENGELOLAAN FARMASI DI RUMAH SAKIT. Jurnal
Penelitian Perawat Profesional, 5(3), 1093–1102.
http://jurnal.globalhealthsciencegroup.com/index.php/JPPP
Douaioui, K., Oucheikh, R., Benmoussa, O., & Mabrouki, C. (2024). Machine Learning and Deep
Learning Models for Demand Forecasting in Supply Chain Management: A Critical Review. In
Applied System Innovation (Vol. 7, Issue 5). Multidisciplinary Digital Publishing Institute
(MDPI). https://doi.org/10.3390/asi7050093
Hananto, L. A., Boedirahardja, P., & Wijayanti, T. (2024). Analisis Mutu Pelayanan Pengelolaan
Obat di Puskesmas X dan Puskesmas Y Kabupaten Sukoharjo Tahun 2022. Journal of Islamic
Pharmacy, 9(1), 6–9. https://doi.org/10.18860/jip.v9i1.25845
Indaryono, I., Rostiani, Y., Yusuf, A. M., & Apriyani, P. M. (2022). Komputerisasi Akuntansi
Pengendalian Persediaan Obat Di Apotek Lira Medika Berbasis VB,Net. Jurnal Interkom:
Jurnal Publikasi Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 17(3), 146–155.
https://doi.org/10.35969/interkom.v17i3.264
Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N.,
Ramírez-Quintana´, M., & Flach, P. (2020). CRISP-DM Twenty Years Later: From Data Mining
Processes to Data Science Trajectories. IEEE Transactions on Knowledge and Data
Engineering. https://www.kdnuggets.com/
Mulia, J. R., & Nurcahyo, G. W. (2022). Prediksi Pemakaian Obat Kronis Menggunakan Metode
Monte Carlo. Jurnal Informasi Dan Teknologi, 81–85. https://doi.org/10.37034/jidt.v4i2.198
Rukmana, T. I., Nusaiba, P., & Sitepu, E. S. (2023). Analisis Pengelolaan Obat di Puskesmas
Margamulya Kecamatan Bekasi Utara Tahun 2021. JFIOnline | Print ISSN 1412-1107 | e-ISSN
2355-696X, 15(2), 101–113. https://doi.org/10.35617/jfionline.v15i2.134
Siregar, S. R., & Widyasari, R. (2023). PERAMALAN HARGA CRUDE OIL MENGGUNAKAN
METODE LONG SHORT-TERM MEMORY (LSTM) DALAM RECURRENT NEURAL
NETWORK (RNN). Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika Dan
Statistika, 4(3), 1478–1489. https://doi.org/10.46306/lb.v4i3
Sriyani, A., & Anggraini, N. (2024). IMPLEMENTASI APLIKASI PENJUALAN DAN PERSEDIAAN
OBAT BERBASIS DESKTOP (Studi Kasus : Apotek Wisa Farma). In JIFOTECH (JOURNAL OF
INFORMATION TECHNOLOGY (Vol. 4, Issue 2).
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ali Zainal Abidin Shahab, Ghea Sekar Palupi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Abstract views: 46



