Assessing the Strategic Impact of Artificial Intelligence - Robotic Process Automation on Enterprise Architecture in the Telecommunications Industry
DOI:
https://doi.org/10.26740/vubeta.v1i3.36736Keywords:
Artificial Intelligence, Digital Transformation, Enterprise Architecture, Robotic Process Automation, TelecommunicationAbstract
This project explores the strategic impact of Artificial Intelligence (AI)-enhanced Robotic Process Automation (RPA) on Enterprise Architecture (EA) within the telecommunications industry. Traditionally, RPA has been applied to automate repetitive tasks without altering underlying IT infrastructure, focusing primarily on operational efficiency. However, the integration of AI introduces cognitive capabilities to RPA, enabling more dynamic interactions within complex organizational systems. This project assesses how AI-driven RPA can influence EA by enhancing system efficiency, supporting business-IT alignment and promoting digital transformation. Through case studies and analyses of various telecommunications operations, the project investigates the dual role of AI-enhanced RPA in both streamlining enterprise-wide processes and maintaining adaptability to meet industry demands. The findings indicate that, while AI-RPA integration holds significant promise for accelerating operational improvements, it also presents unique challenges related to governance, scalability and long-term sustainability. This work contributes insights into the adoption of AI-driven RPA as a transformative tool for telecommunications, offering guidance on best practices for aligning automated systems with enterprise strategic goals.
References
[1] D. A. da S. Costa, H. S. Mamede, and M. M. da Silva, “Robotic Process Automation (RPA) adoption: a systematic literature review,” Eng. Manag. Prod. Serv., vol. 14, no. 2, pp. 1–12, 2022.https://doi.org/10.2478/emj-2022-0012
[2] G. Auth, C. Czarnecki, and F. Bensberg, Impact of robotic process automation on enterprise architectures. Gesellschaft für Informatik eV, 2019.
[3] V. Tatikonda, K. Venigandla, and N. Vemuri, “Transforming customer banking experiences: AI-driven RPA for customized service delivery,” Int. J. Dev. Res., vol. 12, no. 11, pp. 60674–60677, 2022. https://doi.org/10.37118/ijdr.28042.11.2022
[4] M. M. S. AlKharbush, M. H. Z. Mahmoud, and N. A. A. Bakar, “A Review of Enterprise Architecture for Strategic Performance Management in the Transportation Sector Digital Transformation,” Open Int. J. Informatics, vol. 11, no. 1, pp. 74–87, 2023. https://doi.org/10.11113/oiji2023.11n1.245
[5] A. B. M. Nayeem, R. Dilnutt, and S. Kurnia, “Enterprise Architecture Practice and Challenges in Achieving Sustainable Digital Transformation in Developing Countries,” 2023.
[6] N. A. A. Bakar, A. H. Suib, A. Othman, A. A. Amdan, M. A. A. Hassan, and S. S. Hussein, “Artificial Intelligence in Enterprise Architecture: Innovations, Integration Challenges, and Ethics,” in International Conference on Innovation & Entrepreneurship in Computing, Engineering & Science Education (InvENT 2024), Atlantis Press, 2024, pp. 578–588. https://doi.org/10.2991/978-94-6463-589-8_54
[7] M. A. Rauf and M. M. I. Jim, “Ai-powered predictive analytics for intellectual property risk management in supply chain operations: a big data approach,” Glob. Mainstream J., vol. 1, no. 4, pp. 10–62304, 2024.
[8] N. Afriliana and A. Ramadhan, “The trends and roles of robotic process automation technology in digital transformation: a literature,” J. Syst. Manag. Sci., vol. 12, no. 3, pp. 51–73, 2022.
[9] M. Eulerich, J. Pawlowski, N. J. Waddoups, and D. A. Wood, “A framework for using robotic process automation for audit tasks,” Contemp. Account. Res., vol. 39, no. 1, pp. 691–720, 2022. https://doi.org/10.1007/s10257-022-00553-8
[10] L.-V. Herm, C. Janiesch, A. Helm, F. Imgrund, A. Hofmann, and A. Winkelmann, “A framework for implementing robotic process automation projects,” Inf. Syst. E-bus. Manag., vol. 21, no. 1, pp. 1–35, 2023. https://doi.org/10.1007/s10257-022-00553-8
[11] A. R. Kunduru, “Cloud BPM application (Appian) robotic process automation capabilities,” Asian J. Res. Comput. Sci., vol. 16, no. 3, pp. 267–280, 2023. https://doi.org/10.9734/ajrcos/2023/v16i3361
[12] S. Kakolu, “Security design considerations in robotic process automations,” Int. J. Robot. Res., vol. 1, no. 1, pp. 1–8, 2023.
[13] S. Kotusev, S. Kurnia, and R. Dilnutt, “Enterprise architecture artifacts as boundary objects: An empirical analysis,” Inf. Softw. Technol., vol. 155, p. 107108, 2023. https://doi.org/10.1016/j.infsof.2022.107108
[14] B. Y. Wedha and D. Hindarto, “Maximizing ERP benefits with enterprise architecture: a holistic approach,” J. Comput. Networks, Archit. High Perform. Comput., vol. 5, no. 2, pp. 703–713, 2023. https://doi.org/10.47709/cnahpc.v5i2.2790
[15] H. Alghamdi, “Assessing the impact of enterprise architecture on digital transformation success: A global perspective,” Sustainability, vol. 16, no. 20, p. 8865, 2024. https://doi.org/10.3390/su16208865
[16] M. N. Alwi, D. Hindarto, A. Marina, and D. Yudhakusuma, “Efficiency and effectiveness: enterprise architecture strategies for healthcare service,” Int. J. Softw. Eng. Comput. Sci., vol. 3, no. 3, pp. 386–397, 2023. https://doi.org/10.35870/ijsecs.v3i3.1813
[17] Y. Jiang, X. Li, H. Luo, S. Yin, and O. Kaynak, “Quo vadis artificial intelligence?,” Discov. Artif. Intell., vol. 2, no. 1, p. 4, 2022. https://doi.org/10.1007/s44163-022-00022-8
[18] T. Huynh-The, Q.-V. Pham, X.-Q. Pham, T. T. Nguyen, Z. Han, and D.-S. Kim, “Artificial intelligence for the metaverse: A survey,” Eng. Appl. Artif. Intell., vol. 117, p. 105581, 2023. https://doi.org/10.1016/j.engappai.2022.105581
[19] C. Huang, Z. Zhang, B. Mao, and X. Yao, “An overview of artificial intelligence ethics,” IEEE Trans. Artif. Intell., vol. 4, no. 4, pp. 799–819, 2022. https://doi.org/10.1109/TAI.2022.3194503
[20] Z. Sun et al., “A review of earth artificial intelligence,” Comput. Geosci., vol. 159, p. 105034, 2022.
[21] C. A. Ezeigweneme, A. A. Umoh, V. I. Ilojianya, and A. O. Adegbite, “Review of telecommunication regulation and policy: comparative analysis USA and Africa,” Comput. Sci. IT Res. J., vol. 5, no. 1, pp. 81–99, 2024. https://doi.org/10.51594/csitrj.v5i1.703
[22] L. Saha, H. K. Tripathy, T. Gaber, H. El-Gohary, and E.-S. M. El-kenawy, “Deep Churn Prediction Method for Telecommunication Industry,” Sustain., vol. 15, no. 5, 2023, doi: 10.3390/su15054543. https://doi.org/10.3390/su15054543
[23] I. Haq et al., “Impact of 3G and 4G Technology Performance on Customer Satisfaction in the Telecommunication Industry,” Electron., vol. 12, no. 7, 2023, doi: 10.3390/electronics12071697. https://doi.org/10.3390/electronics12071697
[24] H. Ribeiro, B. Barbosa, A. C. Moreira, and R. G. Rodrigues, “Determinants of churn in telecommunication services: a systematic literature review,” Manag. Rev. Q., vol. 74, no. 3, pp. 1327–1364, 2024, doi: 10.1007/s11301-023-00335-7. https://doi.org/10.1007/s11301-023-00335-7
[25] S. Saleh and S. Saha, “Customer retention and churn prediction in the telecommunication industry: a case study on a Danish university,” SN Appl. Sci., vol. 5, no. 7, 2023, doi: 10.1007/s42452-023-05389-6.
[26] A. Amin, A. Adnan, and S. Anwar, “An adaptive learning approach for customer churn prediction in the telecommunication industry using evolutionary computation and Naïve Bayes,” Appl. Soft Comput., vol. 137, 2023, doi: 10.1016/j.asoc.2023.110103.
[27] P. Lalwani, M. K. Mishra, J. S. Chadha, and P. Sethi, “Customer churn prediction system: a machine learning approach,” Computing, vol. 104, no. 2, pp. 271–294, 2022, doi: 10.1007/s00607-021-00908-y.
[28] F. Ehsani and M. Hosseini, “Customer churn analysis using feature optimization methods and tree-based classifiers,” J. Serv. Mark., vol. 39, no. 1, pp. 20–35, 2025, doi: 10.1108/JSM-04-2024-0156.
[29] K. D. Singh, P. Deep Singh, A. Bansal, G. Kaur, V. Khullar, and V. Tripathi, “Exploratory Data Analysis and Customer Churn Prediction for the Telecommunication Industry,” in ACCESS 2023 - 2023 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems, 2023, pp. 197–201. doi: 10.1109/ACCESS57397.2023.10199700.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Abubakar Umar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract views: 51
,
PDF Downloads: 47





