Investigating Soliton-Wave Dynamics Using the Focusing Nonlinear Schr¨odinger Equation
DOI:
https://doi.org/10.26740/vubeta.v3i1.43039Keywords:
Focusing NLSE, Kerr nonlinearity, Quadratic-Cubic nonlinearity, Optical solitons , Conservation lawsAbstract
This research undertakes a comprehensive investigation of the optical soliton solutions of the Focusing Non-linear Schr¨odinger Equation (NLSE), a fundamental model describing the propagation of optical solitons in nonlinear media. To achieve this, we employ two versatile and efficient methods: the Ricatti-Bernoulli Sub Ordinary Differential Equation (RBSODE) method and the Bernoulli Sub Ordinary Differential Equation (BSODE) method. These methods enable us to derive a wide range of optical soliton solutions.
We examine two distinct nonlinearities: the Kerr law nonlinearity and the quadratic-cubic nonlinearity. These nonlinearities are crucial in determining the behavior of optical solitons in various nonlinear optical media. Our analysis reveals that the derived soliton solutions exhibit distinct characteristics, such as amplitude, width, and velocity, which are influenced by the type of nonlinearity and the parameters of the NLSE.
Furthermore, we utilize the multiplier approach to obtain the conservation laws of the NLSE. These conservation laws provide valuable insights into the underlying dynamics of the optical solitons and have significant implications for the design and optimization of nonlinear optical system.
References
[1] Chen J, Pelinovsky, “Rogue periodic waves of the focusing nonlinear Schr¨odinger equation”, Proc. R. Soc. A, vol. 474, no. 2210, 20170814, 2018. https://doi.org/10.1098/rspa.2017.0814
[2] Wright OC., “Effective integration of ultra-elliptic solutions of the focusing nonlinear Schr¨oodinger equation”, Phys. D, vol. 321–322, pp. 16–38, 2016. https://doi.org/10.1016/j.physd.2016.03.002
[3] M. Bertola, T. Grava and G. Orsatti: Soliton shielding of the focusing nonlinear Schrodinger equation. ISSA, via Bonomea 265, 34136, Trieste, Italy
[4] Bertola M, El GA, Tovbis A., “Rogue waves in multiphase solutions of the focusing nonlinear Schr¨odinger equation”. Proc. R. Soc. A, vol. 472, 20160340, 2016. https://doi.org/10.1098/rspa. 2016.0340
[5] Deconinck B, Segal BL. 2017 The stability spectrum for elliptic solutions to the focusing NLS equation. Phys. D 346, 1–19, https://doi.org/10.1016/j.physd.2017.01.004
[6] M. Borghese et al., “Long time asymptotic behavior of the focusing nonlinear Schr¨odinger equation”, Ann. H. Poincar´e – AN (2017), https://doi.org/10.1016/j.anihpc.2017.08.006
[7] M. Mirzazadeh, M. Eslami, D. Milovic, A. Biswas, “Topological solitons of resonant nonlinear Schr€odinger equation with dual-power law nonlinearity using G/G expansion technique”, Optik, vol. 19, 5480e5489, 2014. https://doi.org/10.1016/j.ijleo.2014.03.042
[8] M. Mirzazadeh, M. Eslami, B.F. Vajargah, A. Biswas, Optical solitons and optical rogons of generalized resonant dispersive nonlinear Schr€odinger equation with power law nonlinearity, Optik, vol. 125, 4246e4256, 2014. https://doi.org/10.1016/j.ijleo.2014.04.014
[9] H. Triki, T. Hayat, O.M. Aldossary, A. Biswas, “Bright and dark solitons for the resonant nonlinear Schr€odinger equation with time- dependent coefficients”, Opt. Laser Technol. vol. 44, 2223e2231, 2012. https://doi.org/10.1016/j.optlastec.2012.01.037
[10] S. Z Hassan, A. E Mahmoud, A Riccati–Bernoulli, “Sub-ODE Method for Some Nonlinear Evolution Equations”, J. Druyter, vol. 45, 2018. https://doi.org/10.1515/ijnsns.
[11] A. Biswas, “Soliton solutions of the perturbed resonant nonlinear dispersive Schr€odinger’s equation with full nonlinearity by semi-inverse variational principle”, Quantum Phys. Lett. 2,79e84, 2012.
[12] M. Inc, A.I. Aliyu, A. Yusuf, “Dark optical, singular solitons and conservation laws to the nonlinear Schr¨odinger’s equation with spatio-temporal dispersion”, Mod. Phys. Lett. B. vol. 31, no. 14, 1750163, 2017. https://doi.org/10.1142/S0217984917501639
[13] M. Inc, A.I. Aliyu, A. Yusuf, D. Baleanu, “Optical solitary waves, conservation laws and modulation instability analysis to the nonlinear Schr¨odinger’sequation in compressional dispersive Alven waves”, Optik, vol. 155, pp. 257–266, 2018. https://doi.org/10.1016/j.ijleo.2017.10.109
[14] M. Inc, A.I. Aliyu, A. Yusuf, D. Baleanu, “New solitary wave solutions and conservation laws to the Kudryashov–Sinelshchikov equation”, Optik, vol. 142, pp. 665–673, 2017. https://doi.org/10.1016/j.ijleo.2017.05.055
[15] F. Tchier, A. Yusuf, A.I. Aliyu, M. Inc, “Optical and other solitons for the fourth-order dispersive nonlinear Schr¨odinger’s equation with dual-power lawnonlinearity, Superlatt”, Microstruct., vol. 105, pp. 183–197, 2017. https://doi.org/10.1016/j.spmi.2017.03.022
[16] Q. Zhou, M. Ekici, M. Mirzazadeh, A. Sonmezoglu, “The investigation of soliton solutions of the coupled sine-Gordon equation in nonlinear optics”, J. Mod. Opt, vol. 64, pp. 1677–1682, 2017. https://doi.org/10.1080/09500340.2017.1310318
[17] F. Tchier, A. Yusuf, A.I. Aliyu, M. Inc, “Optical and other solitons for the fourth-order dispersive nonlinear Schr¨odinger’s equation with dual-power lawnonlinearity”, Superlatt. Microstruct., vol. 105, pp. 183–197, 2017. https://doi.org/10.1016/j.spmi.2017.03.022
[18] A. Biswas, H. Triki, Q. Zhou, M.Z. Ullah, P. Asma, S. Moshokoa, M.R. Belic, “Perturbation theory and optical soliton cooling with anti-cubic nonlinearity”, Optik, vol. 142, pp. 73–76, 2017. https://doi.org/10.1016/j.ijleo.2017.05.060
[19] A. Biswas, M.Z. Ullah, H. Triki, Q. Zhou, S. Moshokoa, M.R. Belic, “Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle”, Optik, vol. 143, pp. 131–134. https://doi.org/10.1016/j.ijleo.2017.06.087
[20] A. Biswas, H. Triki, Q. Zhou, S.P. Moshokoa, M.Z. Ullah, M. Belic, “Cubic-quartic optical solitons in Kerr and power law media”, Optik, vol. 144, pp. 357–362, 2017. https://doi.org/10.1016/j.ijleo.2017.07.008
[21] A. Biswas, Q. Zhou, S.P. Moshokoa, H. Triki, M. Belic, R.T. Alqahtani, “Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations”, Optik, vol. 145, pp. 14–17, 2017. https://doi.org/10.1016/j.ijleo.2017.07.036
[22] M. Inc, A. I Aliyu and A. Yusuf, “On the classification of conservation laws and soliton solutions of the long short-wave interaction system”, Modern Physics Letters B, vol. 32, no. 18, 1850202, 2018. https://doi.org/10.1142/S0217984918502020
[23] O. Fabert, “Hamiltonian Floer Theory for Nonlinear Schr¨odinger Equations and the Small Divisor Problem,” International Mathematics Research Notices, vol. 2022, no. 16, pp. 12220–12252, 2021. https://doi.org/10.1093/imrn/rnab053.
[24] Sedletsky, Y. V., Gandzha, I. S., “Hamiltonian form of an extended nonlinear Schr¨odinger equation for modelling the wave field in a system with quadratic and cubic nonlinearities”, Mathematical Modelling of Natural Phenomena, vol. 17, no. 43, 2022. https://doi.org/10.1051/mmnp/2022044
[25] Sh. Amiranashvili and A. Demircan, “Hamiltonian structure of propagation equations for ultrashort optical pulses”, Phys. Rev. A, vol. 82, 013812, 2010. https://doi.org/10.1103/PhysRevA.82.013812
[26] Aliyu, A. I., Yusuf, J. S., Nauman, M. M., Ozsahin, D. U., Agaie, B. G., Zaini, J. H., Umar, H. Lie, “Symmetry Analysis and Explicit Solutions of the Estevez Mansfield-Clarkson Equation”, Journal of Symmetry, vol.16, no. 9, 2024. https://doi.org/10.3390/sym16091194
[27] W. Craig, P. Guyenne and C. Sulem, “A Hamiltonian approach to nonlinear modulation of surface water waves”, Wave Motion, vol. 47, pp. 552–563, 2020. https://doi.org/10.1016/j.wavemoti.2010.04.002
[28] W. Craig, P. Guyenne and C. Sulem, “Hamiltonian higher-order nonlinear Schr¨odinger equations for broader-banded waves on deep water”, Eur. J. Mech. B/Fluids, vol. 32, pp. 22–31, 2021. https://doi.org/10.1016/j.euromechflu.2011.09.008
[29] O. Gramstad and K. Trulsen, “Hamiltonian form of the modified nonlinear Schr¨odinger equation for gravity waves on arbitrary depth”, J. Fluid Mech, vol. 670, pp. 404–426, 2011. https://doi.org/10.1017/S0022112010005355
[30] P. Guyenne, D.P. Nicholls and C. Sulem (eds.), “Hamiltonian Partial Differential Equations and Appli- cations”, Springer, New York, 2015. https://doi.org/10.1007/978-1-4939-2950-4
[31] Galadima B. A, Yusuf J. S, Aliyu A. I, A. A Wachin and S. U Zuwaira, “Optical Soliton Solutions of Burgers-Fisher and Burgers-Huxley Equations”, Kasu journal of mathematical sciences (KJMS), vol. 5, no. 1, 2024. https://doi.org/10.5281/zenodo.12627471
[32] Jibrin Sale Yusuf, “Dynamics of Generalized Unstable Nonlinear Schrodinger Equation: Insta- bilities, Solitons, and Rogue Waves”, American Journal of Science, Engineering and Technology, vol. 11, no. 1, pp. 1-18, 2025 https://doi.org/10.11648/j.ijamtp.20251101.11
[33] Ahmad, K., Bibi, K., Arif, M.S., Abodayeh, K., “New exact solutions of Lan- dau–Ginzburg–Higgs equation using power index method”, J. Funct. Spaces, pp. 1–6, 2023. https://doi.org/10.1155/2023/4351698
[34] Ahmad, S., Mahmoud, E.E., Saifullah, S., Ullah, A., Ahmad, S., Akgu¨l, A., El Din, S.M., “New waves solutions of a nonlinear Landau–Ginzburg–Higgs equation: the Sardar-subequation and energy balance approaches”, Results Phys., vol. 51, 106736, 2023. https://doi.org/10.1016/j.rinp.2023.106736
[35] Akram, G., Sajid, N., Abbas, M., Hamed, Y.S., Abualnaja, K.M., “Optical solutions of the Date- Jimbo–Kashiwara–Miwa equation via the extended direct algebraic method”, J. Math., pp. 1–18, 2021. https://doi.org/10.1155/2021/5591016
[36] Akram, G., Sadaf, M., Khan, M.A.U., “Soliton Dynamics of the generalized shallow water like equation in nonlinear phenomenon”, Front. Phys., vol. 10, 822042, 2022. https://doi.org/10.3389/fphy.2022.822042
[37] Akram, G., Sadaf, M., Sarfraz, M., Anum, N., “Dynamics investigation of (1+1)-dimensional time- fractional potential Korteweg-de Vries equation”, Alexandria Eng. J., vol. 61, pp. 501–509, 2022. https://doi.org/10.1016/j.aej.2021.06.023
[38] Akram, G., Zainab, I., Sadaf, M., Bucur, A., “Solitons, one-line rogue wave and breather wave solutions of a new extended KP-equation”, Results Phys., vol. 55, 107147, 2023. https://doi.org/10.1016/j.aej.2021.06.023
[39] Akram, G., Sajid, N., “Solitary wave solutions of (2+1)-dimensional Maccari system”, Modern Phys. Lett. B., vol. 35, no. 25, 2150391, 2021.
[40] Ali, M.R., Khattab, M.A., Mahrouk, S.M., “Travelling wave solution for the Landau–Ginburg–Higgs model via the inverse scattering transformation method”, Nonlinear Dyn., vol. 111, no. 4, pp. 7687–7697, 2023. https://doi.org/10.1007/s11071-022-08224-6
[41] M. Pichler and G. Biondini,” On the focusing non-linear Schr¨odinger equation with non-zero boundary conditions and double poles,” IMA Journal of Applied Mathematics, vol. 82, no. 1, pp. 131-151, Feb. 2017. https://doi.org/10.1093/imamat/hxw009
[42] Arnous, A.H., Mirzazadeh, M., Akbulut, A., Akinyemi, L., “Optical solutions and conservation laws of the Chen–Lee–Liu equation with Kudryashov’s refractive index via two integrable techniques”, Waves Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2045044
[43] M. Younis, N. Cheemaa, S.A. Mahmood, S.T.R. Rizvi, “On optical solitons: the chiral nonlin- earSchr¨odinger equation with perturbation and Bohm potential”, Opt. Quantum Electron, vol. 48, no. 54, 2016. https://doi.org/10.1007/s11082-016-0809-2
[44] W.H. Zhu, L. Zhou, G.P. Ai, “Different complex wave structures described by theHirota equation with variable coefficients in inhomogeneous optical fibers”, Appl. Phys. B, vol. 125, no. 9, pp. 175, 2019. https://doi.org/10.1007/s00340-019-7287-8
[45] A.M. Wazwaz, “A study on linear and nonlinear Schrodinger equations by the variational iteration method”, Chaos Solitons Fractals, vol. 37, no. 4, pp. 1136–1142, 2008. https://doi.org/10.1016/j.chaos.2006.10.009
[46] J. Manafian, “Optical soliton solutions for Schrodinger type nonlinear evolution equations by the tan(ϕ/2)-expansion method”, Optik, vol. 127, no. 10, pp. 4222–4245, 2016. https://doi.org/10.1016/j.ijleo.2016.01.078
[47] Q. Zhou, A. Biswas, “Optical soliton in parity-time-symmetric mixed linear and nonlinear lattice withnon Kerr law nonlinearity”, Superlattices Microstruct., vol. 109, pp. 588–598, 2017. https://doi.org/10.1016/j.spmi.2017.05.049
[48] C.-G.R. Teh, W.K. Koo, B.S. Lee, “Jacobian elliptic wave solutions for the Wadati–Segur–Ablowitz equation”, Int. J. Mod. Phys. B, vol. 11, no. 23, pp. 2849–2854, 1997. https://doi.org/10.1142/S0217979297001398
[49] E. Yomba, “The general projective Riccati equations method and exact solutions for a class of nonlinearpartial differential equations Chin”, J. Phys. Taipei, vol. 43, no. 6, 2005.
[50] N. Taghizadeh, M. Mirzazadeh, “The first integral method to some complex nonlinear partial differential equations” J. Comput. Appl. Math., vol. 235, no. 16, pp. 4871–4877, 2011. https://doi.org/10.1016/j.cam.2011.02.021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jibrin Sale Yusuf

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract views: 0
,
PDF Downloads: 0





