Optimization of CNC Milling Parameters Machining on Surface Roughness and Hardness Value of Material SS 316
DOI:
https://doi.org/10.26740/vubeta.v3i1.40971Keywords:
Stainless steel 316, CNC milling, Surface Roughness, Hardness, OptimalizationAbstract
The issue in the CNC milling process on SS 316 material is the variation in machining parameters that can affect the surface quality and hardness of the workpiece. Surface quality and hardness are important in the application of industrial machine components because they affect wear resistance and component lifespan. This research aims to optimize the machining parameters for surface roughness and hardness values on SS 316 material. Thus, optimal parameters are obtained to produce a smooth surface and appropriate hardness on SS 316 material in the CNC milling process. The varied machining parameters are spindle speed (1500, 1800, 2100 rpm), feed rate (50, 100, 150 mm/min), and depth of cut (0.2, 0.5, 0.8 mm). At present, the Taguchi method is used to determine the optimal machining parameters. From the research results, it was found that the machining parameters that produce optimal surface roughness are spindle speed (2100 rpm), feed rate (50 mm/min), and depth of cut (0.2 mm). Furthermore, the parameter that most affects surface roughness is the feed rate. On the other hand, for hardness, the optimal parameters are spindle speed (1500 rpm), feed rate (50 mm/min), and depth of cut (0.2 mm), with the factor that influences hardness being spindle speed. The optimal combination of parameters for roughness does not always yield optimal results for hardness, so an approach is needed in selecting machining parameters. This research contributes to the quality of the CNC milling process, particularly for SS 316 material.
References
[1] A. Reyad, E. Hornus, F. Bhatti, S. Parapurath, T. Sapanathan, & M. Iannuzzi, "Impact of Minor Changes in Molybdenum Content on the Localized Corrosion Resistance of Austenitic Stainless Steels", Materials and Corrosion, vol. 76, no. 8, pp. 1169-1182, 2025. https://doi.org/10.1002/maco.202414703
[2] A. Palaniappan, V. D., S. Hans, & P. Janarthanan, "Investigation of Stainless Steel 316 Coated with Nickel", Materials Today: Proceedings, vol. 62, pp. 2376-2379, 2022. https://doi.org/10.1016/j.matpr.2022.04.852
[3] T. Li, M. Zhu, P. Deng, A. Chen, H. Yan, & H. Yi, “Corrosion of 316 SS in Chloride Molten Salt for Thermal Energy Storage: Inhibitory Effects of Al Powder,” Journal of Physics: Conference Series, vol. 2838, no. 1, pp. 012013, 2024, doi: https://doi.org/10.1088/1742-6596/2838/1/012013
[4] Y. Xu, Y. Li, T. Chen, C. Dong, K. Zhang, & X. Bao, "A Short Review of Medical-Grade Stainless Steel: Corrosion Resistance and Novel Techniques", Journal of Materials Research and Technology, vol. 29, p. 2788-2798, 2024. https://doi.org/10.1016/j.jmrt.2024.01.240
[5] S. Rossi, S. Leso, & M. Calovi, "Study of the Corrosion Behavior of Stainless Steel in Food Industry", Materials, vol. 17, no. 7, pp. 1617, 2024. https://doi.org/10.3390/ma17071617
[6] J. Gubicza, K. Mukhtarova, & M. Kawasaki, "Nanostructuring of Additively Manufactured 316L Stainless Steel Using High-Pressure Torsion Technique: An X-ray Line Profile Analysis Study", Materials, vol. 17, no. 2, pp. 454, 2024. https://doi.org/10.3390/ma17020454
[7] H. Fukuyama, H. HIGASHI, & H. Yamano, "Normal Spectral Emissivity, Specific Heat Capacity, and Thermal Conductivity of Type 316 Austenitic Stainless Steel Containing up to 10 Mass% B4C in a Liquid State", Journal of Nuclear Materials, vol. 568, pp. 153865, 2022. https://doi.org/10.1016/j.jnucmat.2022.153865
[8] M. Malek, M. Grabowski, & S. Skoczypiec, "Selected Aspects of the Design of Special Monolithic Carbide Milling Cutters for Austenitic Steels", Technical Transactions, vol. 2023, no. 1, pp. 1-11, 2023. https://doi.org/10.37705/techtrans/e2023017
[9] M. Grabowski, M. Malek, R. Teimouri, & S. Skoczypiec, "Effect of Cutting-Edge Geometry on the Machinability of 316L Austenitic Steel", Advances in Science and Technology Research Journal, vol. 18, no. 1, pp. 110-117, 2024. https://doi.org/10.12913/22998624/177031
[10] M. Malekan, K. Madsen, J. Airao, C. Ilvig, & R. Aghababaei, "Numerical Assessment of Tool Geometry for Improving Productivity in Milling Stainless Steel 316 L", The International Journal of Advanced Manufacturing Technology, vol. 136, no. 7-8, pp. 3451-3463, 2025. https://doi.org/10.1007/s00170-025-15061-5
[11] Ş. Yüksel, T. ŞİRİN, M. Ay, M. Uçar, & M. Kurt, "A Study on End Mill Tool Geometry Parameters for End Milling of 316L: Finite Element Analysis and Response Surface Methodology Optimization based on Resultant Cutting Force", Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 8, 2024. https://doi.org/10.1007/s40430-024-05027-1
[12] C. Sukkam and S. Chaijit, "Investigation of Influencing Factors on Surface Quality during Low-Speed Cutting of Steels with a Hardness exceeding 50 HRC for forging Dies", Engineering, Technology & Applied Science Research, vol. 14, no. 3, pp. 14056-14061, 2024. https://doi.org/10.48084/etasr.7079
[13] M. Malekan, C. Ilvig, & R. Aghababaei, "Effects of Edge Radius and Coating Thickness on the Cutting Performance of AlCrN-Coated Tool", International Journal of Precision Engineering and Manufacturing, vol. 25, no. 10, pp. 2059-2075, 2024. https://doi.org/10.1007/s12541-024-01074-9
[14] A. Rahman, K. Jauhari, M. Huda, N. Untariyati, M. Azka, R. Rusnaldy et al., "Correlation Analysis of Vibration Signal Frequency with Tool Wear During the Milling Process on Martensitic Stainless Steel Material", Arabian Journal for Science and Engineering, vol. 49, no. 8, pp. 10573-10586, 2023. https://doi.org/10.1007/s13369-023-08397-1
[15] Z. Su, W. Lin, Y. Lin, & J. Hung, "Enhancing Milling Surface Finish: The Role of Servo Parameters and Machining Stability", Engineering, Technology & Applied Science Research, vol. 14, no. 5, pp. 16357-16364, 2024. https://doi.org/10.48084/etasr.8132
[16] E. Franczyk and M. Malek, "Empirical Study on the Effect of Tungsten Carbide Grain Size on Wear Resistance, Cutting Temperature, Cutting Forces and Surface Finish in the Milling Process of 316L Stainless Steel", Advances in Science and Technology Research Journal, vol. 17, no. 6, pp. 367-377, 2023. https://doi.org/10.12913/22998624/175142
[17] A. Ali, M. Younas, M. Khan, S. Jaffery, & Z. Khan, "Machinability Performance of Single Coated and Multicoated Carbide Tools During Turning Ti6Al4V Alloy", International Journal of Precision Engineering and Manufacturing, vol. 26, no. 1, pp. 43-58, 2024. https://doi.org/10.1007/s12541-024-01147-9
[18] F. Kara, F. Bayraktar, F. Savaş, and O. Özbek, “Experimental and Statistical Investigation of the Effect of Coating Type on Surface Roughness, Cutting Temperature, Vibration and Noise in Turning of Mold Steel,” Journal of Materials and Manufacturing, vol. 2, no. 1, pp. 31–43, 2023. https://doi.org/10.5281/zenodo.8020553
[19] L. Sirtuli, F. Lindberg, D. Boing, V. Bushlya, & S. Norgren, "Impact of Cutting Tool and Workpiece Material on Initial Notch Wear in Turning", Wear, vol. 570, pp. 205942, 2025. https://doi.org/10.1016/j.wear.2025.205942
[20] C. Kumar, G. Urbikaín, F. Fernandes, A. Rjoub, & L. Lacalle, "Influence of V Concentration in TiAlSiVN Coating on Self-Lubrication, Friction and Tool Wear During Two-Pass Dry Turning of Austenitic Steel 316 L", Tribology International, vol. 193, pp. 109355, 2024. https://doi.org/10.1016/j.triboint.2024.109355
[21] J. Abellán‐Nebot, C. Vila, & H. Siller, "A Review of the Factors Influencing Surface Roughness in Machining and Their Impact on Sustainability", Sustainability, vol. 16, no. 5, pp. 1917, 2024. https://doi.org/10.3390/su16051917
[22] F. Silva, R. Martinho, L. Magalhães, F. Fernandes, R. Sales-Contini, L. Durão et al., "A Comparative Study of Different Milling Strategies on Productivity, Tool Wear, Surface Roughness, and Vibration", Journal of Manufacturing and Materials Processing, vol. 8, no. 3, pp. 115, 2024. https://doi.org/10.3390/jmmp8030115
[23] A. Equbal, M. Equbal, M. Equbal, P. Ravindrannair, Z. Khan, I. Badruddin et al., "Evaluating CNC Milling Performance for Machining AISI 316 Stainless Steel with Carbide Cutting Tool Insert", Materials, vol. 15, no. 22, pp. 8051, 2022. https://doi.org/10.3390/ma15228051
[24] M. Farooq, S. Anwar, R. Ullah, & R. Haber, "Sustainable Machining of Additive Manufactured SS-316L Underpinning Low Carbon Manufacturing Goal", Journal of Materials Research and Technology, vol. 24, pp. 2299-2318, 2023. https://doi.org/10.1016/j.jmrt.2023.03.122
[25] H. Truong, T. Nguyen, & T. Bui, "Evaluating the Impact of Cutting Speed and Feed Rate on Surface Roughness Utilizing a Four-Insert Carbide Face Milling Cutter on CNC Machines", Proceedings in Technology Transfer, pp. 347-356, 2025. https://doi.org/10.1007/978-981-97-7083-0_34
[26] M. Shah and A. Utpat, "Performance Evaluation of Al₂O₃-based Castor Oil Nanofluid in MQL-Assisted Turning of AISI 316L Stainless Steel", Journal of Materials Science: Materials in Engineering, vol. 20, no. 1, 2025. https://doi.org/10.1186/s40712-025-00341-5
[27] C. Natesha, Y. Shashidhara, H. Amarendra, R. Shetty, S. Harisha, V. Shenoy et al., " Tribological and Morphological Study of AISI 316L Stainless Steel during Turning under Different Lubrication Conditions", Lubricants, vol. 11, no. 2, pp. 52, 2023. https://doi.org/10.3390/lubricants11020052
[28] M. Danish, M. Gupta, S. Irfan, S. Ghazali, M. Rathore, G. Królczyk et al., "Machine Learning Models for Prediction and Classification of Tool Wear in Sustainable Milling of Additively Manufactured 316 Stainless Steel", Results in Engineering, vol. 22, pp. 102015, 2024. https://doi.org/10.1016/j.rineng.2024.102015
[29] N. Ross, P. Mashinini, R. Rai, & M. Gupta, "Carbon Nano Dots Mixed Rice Bran Oil as a Cutting Fluid for Enhanced Lubrication/Cooling in Milling of Additively Manufactured 316 Stainless Steel", Journal of Molecular Liquids, vol. 391, pp. 123200, 2023. https://doi.org/10.1016/j.molliq.2023.123200
[30] Y. Asmara, J. Raman, S. Suparjo, F. Bahfie, & C. Yap "Empirical Study of the Effect of Nanocoolant Particles on Corrosion Rate of 316 Stainless Steel", International Journal of Corrosion, vol. 2024, no. 1, 2024. https://doi.org/10.1155/2024/5577674
[31] M. Guimarães, V. Saciotto, Q. He, J. DePaiva, A. Diniz, & S. Veldhuis, "Optimizing Machining Efficiency in High-Speed Milling of Super Duplex Stainless Steel with SiAlON Ceramic Inserts", Machines, vol. 12, no. 5, pp. 349, 2024. https://doi.org/10.3390/machines12050349
[32] R. Kadi, S. Dundur, D. Goudar, & J. Haider, "Applying Multi-Response Optimization for Sustainable Machining of 316 Stainless Steel with Coconut Oil-Assisted Minimum Quantity Lubrication", Tribology - Materials, Surfaces & Interfaces, vol. 17, no. 1, pp. 48-61, 2023. https://doi.org/10.1080/17515831.2023.2174333
[33] B. Avcı, Ö. Varal, İ. Dalmış, & S. Yılmaz, "Examination of Surface Hardness and Roughness of AISI 1050 Steel Material in Milling Based on Surface Processing Conditions", European Journal of Engineering and Applied Sciences, vol. 7, no. 1, pp. 27-34, 2024. https://doi.org/10.55581/ejeas.1408250
[34] T. Machfuroh, A. Lostari, M. Ulum, & E. Pramartaningthyas, "Pengaruh Temperatur Pemanasan Dan Media Pendinginan Pada Proses Flame Hardening Terhadap Nilai Kekerasan Pada Baja S45c", Otopro, vol. 20, no. 1, pp. 1-6, 2024. https://doi.org/10.26740/otopro.v20n1.p1-6
[35] D. Tsamroh, D. Puspitasari, P. Puspitasari, & M. Mustapha, "Microstructure and Hardness Study of Al6061 Resulting from Artificial Aging", Vokasi Unesa Bulletin of Engineering, Technology and Applied Science, vol. 2, no. 1, pp. 48-56, 2025. https://doi.org/10.26740/vubeta.v2i1.34984
[36] M. Kalin, B. Zugelj, M. Lamut, & K. Hamouda, "Elastic and Plastic Deformation of Surface Asperities and Their Load-Carrying Mechanisms During the Formation of a Real Contact Area", Tribology International, vol. 178, pp. 108067, 2023. https://doi.org/10.1016/j.triboint.2022.108067
[37] Y. Wen, J. Tang, W. Zhou, L. Li, & C. Zhu, "New Analytical Model of Elastic-Plastic Contact for Three-Dimensional Rough Surfaces Considering Interaction of Asperities", Friction, vol. 10, no. 2, pp. 217-231, 2021. https://doi.org/10.1007/s40544-020-0419-7
[38] G. Pintaúde, "Hardness as An Indicator of Material Strength: A Critical Review", Critical Reviews in Solid State and Materials Sciences, vol. 48, no. 5, pp. 623-641, 2022. https://doi.org/10.1080/10408436.2022.2085659
[39] B. Baltazar-García, D. Baltazar-Zamora, L. Landa-Ruiz, J. Reyes, D. Lozano, C. Méndez et al., "Anticorrosive Efficiency of the AISI 316 SS in Sustainable Ecological Concrete Manufactured with SCBA-SF Exposed to Magnesium Sulphate", European Journal of Engineering and Technology Research, vol. 8, no. 6, pp. 24-30, 2023. https://doi.org/10.24018/ejeng.2023.8.6.3121
[40] G. Kónya, J. Takács, I. MISKOLCZI, & Z. Kovács, "Investigation of The Effects of Machining Parameters on Cutting Conditions During Orthogonal Turning of Austenite Stainless Steel", Production Engineering Archives, vol. 30, no. 1, pp. 86-93, 2024. https://doi.org/10.30657/pea.2024.30.8
[41] P. Jadhav, R. Sahai, S. Solanke, & S. Gawande, "Multi-Objective Optimization of EN19 Steel Milling Parameters using Taguchi, ANOVA, and TOPSIS Approaches", Journal of Alloys and Metallurgical Systems, vol. 7, pp. 100102, 2024. https://doi.org/10.1016/j.jalmes.2024.100102
[42] B. Avcı, S. Yılmaz, & İ. Dalmış, "Experimental Optimization of Surface Roughness in Milling of Aisi 304 Stainless Steel on a CNC Vertical Machining Center", Trakya Üniversitesi Mühendislik Bilimleri Dergisi, vol. 25, no. 2, pp. 117-128, 2024. https://doi.org/10.59314/tujes.1597200
[43] A. Twardowska, Ł. Ślusarczyk, & M. Kowalski, "Impact of Deposition of the (TiBx/TiSiyCz) x3 Multilayer on M2 HSS on the Cutting Force Components and Temperature Generated in the Machined Area during the Milling of 316L Steel", Materials, vol. 15, no. 3, pp. 746, 2022. https://doi.org/10.3390/ma15030746
[44] O. Tuyboyov, Z. Muxiddinov, S. Sirojidinov, M. Aliyeva, & N. Urinov, "Optimization of Cutting Depth Parameters to Achieve Stability in the Machining Process", E3S Web of Conferences, vol. 627, pp. 04009, 2025. https://doi.org/10.1051/e3sconf/202562704009
[45] G. Kónya, B. Csorba, N. Szabó, & Z. Kovács, "The Effects of Cutting Parameters on Cutting Force and Tribological Properties of Machined Surface Under Dry Turning of AISI304L Austenitic Stainless Steel", Journal of Manufacturing and Materials Processing, vol. 8, no. 6, pp. 257, 2024. https://doi.org/10.3390/jmmp8060257
[46] M. Casuso, A. Rubio-Mateos, F. Veiga, & А. Lamikiz, "Influence of Axial Depth of Cut and Tool Position on Surface Quality and Chatter Appearance in Locally Supported Thin Floor Milling", Materials, vol. 15, no. 3, pp. 731, 2022. https://doi.org/10.3390/ma15030731
[47] M. Grabowski, E. Franczyk, M. Malek, & S. Skoczypiec, "Primary Research on Dry Milling of AISI 316L Stainless Steel Using Coated Monolithic Carbide Tools", Lecture Notes in Mechanical Engineering, pp. 138-149, 2024. https://doi.org/10.1007/978-3-031-56463-5_11
[48] M. Alsoufi and S. Bawazeer, "Predictive Modeling of Surface Integrity and Material Removal Rate in Computer Numerical Control Machining: Effects of Thermal Conductivity and Hardness", Materials, vol. 18, no. 7, pp. 1557, 2025. https://doi.org/10.3390/ma18071557
[49] O. Şahin and D. Karayel, "Development of an Original Integrated System for Heat Recovery from Coolant in the Machining Process and Investigation of Its Efficiency", Applied Sciences, vol. 14, no. 24, pp. 11499, 2024. https://doi.org/10.3390/app142411499
[50] I. Espinoza-Torres, I. Martínez-Ramírez, J. Sierra‐Hernandez, D. Jáuregui-Vázquez, M. Rivera, F. Torres et al., "Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry", Sensors, vol. 23, no. 21, pp. 8968, 2023. https://doi.org/10.3390/s23218968
[51] E. Ünal and F. Karaca, "Effect of Turning Parameters of AISI 316 Stainless Steel on Temperature and Cutting Forces with Finite Element Model", Thermal Science, vol. 26, no. Spec. issue 1, pp. 61-66, 2022. https://doi.org/10.2298/tsci22s1061u
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Wildan Syifatillah, Talifatim Machfuroh

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract views: 0
,
PDF Downloads: 0





