Absorptive Materials -Based Cooling Technologies for Solar Thermal: A Review of Thermal Management Strategies and Performance Enhancements
DOI:
https://doi.org/10.26740/vubeta.v3i1.44867Keywords:
Hydrogel Cooling, Photovoltaic Thermal , Solar Panel Efficiency, Passive Cooling Techniques , Heat MitigationAbstract
The growing need for utility-scale photovoltaic (PV) systems to advance environmental goals has heightened concerns about the costs of scaling and thermal control. Among all the technical problems linked to PV panels, increased temperatures are the key issue, causing reduced efficiency and module damage. When solar energy is not absorbed by the photocells, the PV module's surface temperature can rise much higher, especially in hot climates. This is especially problematic at air temperatures above 50 °C, as traditional natural convection is unable to efficiently cool the PV modules; hence, the Spanish solar PV harnessing system traps 30% of the energy in the PV modules compared to the original efficiency. Moreover, high surface temperature cause material degradation, resulting in earlier thermal failure, replacement, or the expense of disposing of the latter. This is why methods for enhancing thermal management within PV panels are among the most important aspects, and, combined with several technological advances, PV readily available and could potentially reduce the cost of solar energy in the near future.
References
[1] F. Hussain, M. Othman, B. Yatim, H. Ruslan, K. Sopian, & Z. Ibarahim, "A Study of PV/T Collector with Honeycomb Heat Exchanger", AIP Conference Proceedings, vol. 1571, pp. 10-16, 2013. https://doi.org/10.1063/1.4858622
[2] J. Mojumder, W. Chong, H. Ong, K. Leong, & A. Al-Mamoon, "An Experimental Investigation on Performance Analysis of Air Type Photovoltaic Thermal Collector System Integrated with Cooling Fins Design", Energy and Buildings, 2016. https://doi.org/10.1016/j.enbuild.2016.08.040
[3] A. Abdulmunem, P. Samin, H. Rahman, H. Hussien, & I. Mazali, "Enhancing PV Cell’s Electrical Efficiency using Phase Change Material with Copper Foam Matrix and Multi-Walled Carbon Nanotubes as Passive Cooling Method", Renewable Energy, vol. 160, pp. 663-675, 2020. https://doi.org/10.1016/j.renene.2020.07.037
[4] A. Shahsavar and M. Ameri, "Experimental Investigation and Modeling of a Direct-Coupled PV/T Air Collector", Solar Energy, vol. 84, no. 11, pp. 1938-1958, 2010. https://doi.org/10.1016/j.solener.2010.07.010
[5] A. Kaiser, B. Parra, R. Mazón, J. Garcia, & F. Vera, "Experimental Study of Cooling BIPV Modules by Forced Convection in the Air Channel", Applied Energy, vol. 135, pp. 88-97, 2014. https://doi.org/10.1016/j.apenergy.2014.08.079
[6] D. Leister, "Enhancing the Light Reactions of Photosynthesis: Strategies, Controversies, and Perspectives", Molecular Plant, vol. 16, no. 1, pp. 4-22, 2023. https://doi.org/10.1016/j.molp.2022.08.005
[7] S. Abo-Elfadl, M. Yousef, M. El-Dosoky, & H. Hassan, "Energy, Exergy, and Economic Analysis of Tubular Solar Air Heater with Porous Material: An Experimental Study", Applied Thermal Engineering, vol. 196, pp. 117294, 2021. https://doi.org/10.1016/j.applthermaleng.2021.117294
[8] I. Shafiq, S. Hussain, M. Raza, N. Iqbal, M. Asghar, A. Raza et al., "Crop Photosynthetic Response to Light Quality and Light Intensity", Journal of Integrative Agriculture, vol. 20, no. 1, pp. 4-23, 2021. https://doi.org/10.1016/s2095-3119(20)63227-0
[9] I. Harmailil, S. Sultan, C. Tso, A. Fudholi, M. Mohammad, & A. Ibrahim, "A Review on Recent Photovoltaic Module Cooling Techniques: Types and Assessment Methods", Results in Engineering, vol. 22, pp. 102225, 2024. https://doi.org/10.1016/j.rineng.2024.102225
[10] H. Madhi, S. Aljabair, & A. Imran, "A Review of Photovoltaic/Thermal System Cooled using Mono and Hybrid Nanofluids", International Journal of Thermofluids, vol. 22, pp. 100679, 2024. https://doi.org/10.1016/j.ijft.2024.100679
[11] Y. Ahmed, M. Maghami, J. Pasupuleti, S. Danook, & F. Ismail, "Overview of Recent Solar Photovoltaic Cooling System Approach", Technologies, vol. 12, no. 9, pp. 171, 2024. https://doi.org/10.3390/technologies12090171
[12] M. Abd-Elhady, M. Elhendawy, M. Abd-Elmajeed, & R. Rizk, "Enhancing Photovoltaic Systems: A Comprehensive Review of Cooling, Concentration, Spectral Splitting, and Tracking Techniques", Next Energy, vol. 6, pp. 100185, 2025. https://doi.org/10.1016/j.nxener.2024.100185
[13] B. Utomo, J. Darkwa, D. Du, & M. Worall, "Solar Photovoltaic Cooling and Power Enhancement Systems: A Review", Renewable and Sustainable Energy Reviews, vol. 216, pp. 115644, 2025. https://doi.org/10.1016/j.rser.2025.115644
[14] Z. Wang, G. Hou, H. Taherian, & Y. Song, "Numerical Investigation of Innovative Photovoltaic–Thermal (PVT) Collector Designs for Electrical and Thermal Enhancement", Energies, vol. 17, no. 10, pp. 2429, 2024. https://doi.org/10.3390/en17102429
[15] M. Sheik, M. Aravindan, E. Cüce, A. Dasore, U. Rajak, S. Shaik et al., "A Comprehensive Review on Recent Advancements in Cooling of Solar Photovoltaic Systems using Phase Change Materials", International Journal of Low-Carbon Technologies, vol. 17, pp. 768-783, 2022. https://doi.org/10.1093/ijlct/ctac053
[16] M. Azad, S. Parvin, & T. Hossain, "Performance Evaluation of Nanofluid-based Photovoltaic Thermal (PVT) System with Regression Analysis", Heliyon, vol. 10, no. 7, pp. e29252, 2024. https://doi.org/10.1016/j.heliyon.2024.e29252
[17] M. Sharaby, M. Younes, F. Baz, & F. Abou-Taleb, "State-of-the-Art Review: Nanofluids for Photovoltaic Thermal Systems", Journal of Contemporary Technology and Applied Engineering, vol. 3, no. 1, pp. 11-24, 2024. https://doi.org/10.21608/jctae.2024.288445.1025
[18] M. Majeed and S. Salih, "Cooling Performance Enhancement of PV Systems: Review", AIP Conference Proceedings, vol. 3092, pp. 050006, 2024. https://doi.org/10.1063/5.0199660
[19] D. Binh, P. Vu, M. Pham, D. Nguyen, N. Nguyen, Q. Do et al., "Passive Cooling for Photovoltaic Using Heat Sinks: A Recent Research Review", 2023 Asia Meeting on Environment and Electrical Engineering (EEE-AM), pp. 01-06, 2023. https://doi.org/10.1109/eee-am58328.2023.10395427
[20] K. Kumar, S. Atchuta, M. Prasad, H. Barshilia, & S. Sakthivel, "Review on Selective Absorber Coatings: A Catalyst for Enhanced Solar Energy Conversion Efficiency", Solar Energy Materials and Solar Cells, vol. 277, pp. 113080, 2024. https://doi.org/10.1016/j.solmat.2024.113080
[21] K. Xu, M. Du, L. Hao, J. Mi, Q. Yu, & S. Li, "A Review of High-Temperature Selective Absorbing Coatings for Solar Thermal Applications", Journal of Materiomics, vol. 6, no. 1, pp. 167-182, 2020. https://doi.org/10.1016/j.jmat.2019.12.012
[22] M. Zayed, "Recent Advances in Solar Thermal Selective Coatings for Solar Power Applications: Technology Categorization, Preparation Methods, and Induced Aging Mechanisms", Applied Sciences, vol. 14, no. 18, pp. 8438, 2024. https://doi.org/10.3390/app14188438
[23] Z. Zhou, C. He, & X. Gao, "Recent Advances of Spectrally Selective Absorbers: Materials, Nanostructures, and Photothermal Power Generation", APL Energy, vol. 2, no. 1, 2024. https://doi.org/10.1063/5.0194976
[24] F. Cao, K. McEnaney, G. Chen, & Z. Ren, "A Review of Cermet-based Spectrally Selective Solar Absorbers", Energy & Environmental Science, vol. 7, no. 5, pp. 1615, 2014. https://doi.org/10.1039/c3ee43825b
[25] M. Shaffei, H. Hussein, A. Abouelata, & N. Khattab, "Testing of Advanced Selective Black Coating in a Prototype of Solar Water Heater", Journal of Materials Science: Materials in Engineering, vol. 20, no. 1, 2025. https://doi.org/10.1186/s40712-025-00242-7
[26] W. Phukaokaew, A. Suksri, K. Punyawudho, & T. Wongwuttanasatian, "Thermal Management of Photovoltaic Module using Affordable Organic Phase Change Material Combined with Nano Metal Oxide Particles Enhancer", Heliyon, vol. 10, no. 24, pp. e41054, 2024. https://doi.org/10.1016/j.heliyon.2024.e41054
[27] T. Wongwuttanasatian, T. Sarikarin, & A. Suksri, "Performance Enhancement of a Photovoltaic Module by Passive Cooling using Phase Change Material in a Finned Container Heat Sink", Solar Energy, vol. 195, pp. 47-53, 2020. https://doi.org/10.1016/j.solener.2019.11.053
[28] P. Sudhakar, R. Santosh, B. Asthalakshmi, G. Kumaresan, & R. Velraj, "Performance Augmentation of Solar Photovoltaic Panel Through PCM Integrated Natural Water Circulation Cooling Technique", Renewable Energy, vol. 172, pp. 1433-1448, 2021. https://doi.org/10.1016/j.renene.2020.11.138
[29] Y. Elhenawy, K. Fouad, A. Refaat, O. Al-Qabandi, M. Toderaș, & M. Bassyouni, "Experimental Enhancement of Thermal and Electrical Efficiency in Concentrator Photovoltaic Modules Using Nanofluid Cooling", Energy Science & Engineering, vol. 13, no. 4, pp. 1492-1508, 2025. https://doi.org/10.1002/ese3.2026
[30] M. Kargaran, S. Zeinali Heris, S. Mousavi, & S. Azarberahman, "MXene-based Hybrid Nanofluids in Pulsating Heat Pipes: Advanced Thermal Management for Photovoltaic Efficiency Enhancement and Economic Analysis", Energy, vol. 339, pp. 139007, 2025. https://doi.org/10.1016/j.energy.2025.139007
[31] R. Ziaur, M. Surovy, M. Amin, A. Azad, M. Das, M. Chowdhury et al., "Optimizing Heat Transfer in Circular Heat Exchanger with Hybrid Nanofluid using Response Surface Methodology", Thermal Science and Engineering Progress, vol. 64, pp. 103766, 2025. https://doi.org/10.1016/j.tsep.2025.103766
[32] A. Soliman, X. Li, J. Dong, & P. Cheng, "A Novel Heat Sink for Cooling Photovoltaic Systems using Convex/Concave Dimples and Multiple PCMs", Applied Thermal Engineering, vol. 215, pp. 119001, 2022. https://doi.org/10.1016/j.applthermaleng.2022.119001
[33] H. Akhtari and A. Ghazani, "Thermal Performance Enhancement in PCM Heat Sinks using Novel Conductivity Techniques: A Review", Energy Conversion and Management: X, vol. 28, pp. 101224, 2025. https://doi.org/10.1016/j.ecmx.2025.101224
[34] K. Appalasamy, R. Mamat, & K. Sudhakar, "Smart Thermal Management of Photovoltaic Systems: Innovative Strategies", AIMS Energy, vol. 13, no. 2, pp. 309-353, 2025. https://doi.org/10.3934/energy.2025013
[35] A. BenMoussa, N. Chater, B. Elfahime, & M. Radouani, "Recent Progress in Solar PV Panel Cooling : A Comprehensive Review of Hybrid, Active and Passive Technologies with Energy Recovery Integration", PrePrints: Energy and Fuel Technology, 2025. https://doi.org/10.20944/preprints202507.0888.v1
[36] Y. Li, C. Lin, J. Huang, C. Chi, & B. Huang, "Spectrally Selective Absorbers/Emitters for Solar Steam Generation and Radiative Cooling‐Enabled Atmospheric Water Harvesting", Global Challenges, vol. 5, no. 1, 2020. https://doi.org/10.1002/gch2.202000058
[37] L. Noč and I. Jerman, "Review of the Spectrally Selective (CSP) Absorber Coatings, Suitable for Use in SHIP", Solar Energy Materials and Solar Cells, vol. 238, pp. 111625, 2022. https://doi.org/10.1016/j.solmat.2022.111625
[38] S. Sharma, A. Tahir, K. Reddy, & T. Mallick, "Performance Enhancement of a Building-Integrated Concentrating Photovoltaic System using Phase Change Material", Solar Energy Materials and Solar Cells, vol. 149, pp. 29-39, 2016. https://doi.org/10.1016/j.solmat.2015.12.035
[39] M. Abd-Elhady, Z. Serag, & O. Kandil, "An Innovative Solution to the Overheating Problem of PV Panels", Energy Conversion and Management, vol. 157, pp. 452-459, 2018. https://doi.org/10.1016/j.enconman.2017.12.017
[40] S. Abo-Elfadl, M. Yousef, & H. Hassan, "Energy, Exergy, and Enviroeconomic Assessment of Double and Single Pass Solar Air Heaters Having a New Design Absorber", Process Safety and Environmental Protection, vol. 149, pp. 451-464, 2021. https://doi.org/10.1016/j.psep.2020.11.020
[41] S. Abo-Elfadl, M. Yousef, & H. Hassan, "Energy, Exergy, Economic and Environmental Assessment of using Different Passive Condenser Designs of Solar Distiller", Process Safety and Environmental Protection, vol. 148, pp. 302-312, 2021. https://doi.org/10.1016/j.psep.2020.10.022
[42] S. Abo-Elfadl, M. Yousef, & H. Hassan, "Assessment of Double-pass Pin Finned Solar Air Heater at Different Air Mass Ratios via Energy, Exergy, Economic, and Environmental (4E) Approaches", Environmental Science and Pollution Research, vol. 28, no. 11, pp. 13776-13789, 2020. https://doi.org/10.1007/s11356-020-11628-9
[43] M. Mansour, A. Lafta, A. Salman, & H. Salman, "Exploring the Impact of AI and IoT on Production Efficiency, Quality Precision, and Environmental Sustainability in Manufacturing", Vokasi Unesa Bulletin of Engineering, Technology and Applied Science, vol. 2, no. 2, pp. 342-355, 2025. https://doi.org/10.26740/vubeta.v2i2.38200
[44] B. Dinesh and A. Bhattacharya, "Comparison of Energy Absorption Characteristics of PCM-Metal Foam Systems with Different Pore Size Distributions", Journal of Energy Storage, vol. 28, pp. 101190, 2020. https://doi.org/10.1016/j.est.2019.101190
[45] Y. Du, C. Fell, B. Duck, D. Chen, K. Liffman, Y. Zhang et al., "Evaluation of Photovoltaic Panel Temperature in Realistic Scenarios", Energy Conversion and Management, vol. 108, pp. 60-67, 2016. https://doi.org/10.1016/j.enconman.2015.10.065
[46] L. Aghenta and M. Iqbal, "Development of an IoT Based Open Source SCADA System for PV System Monitoring", 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), pp. 1-4, 2019. https://doi.org/10.1109/ccece.2019.8861827
[47] M. Huang, P. Eames, B. Norton, & N. Hewitt, "Natural Convection in an Internally Finned Phase Change Material Heat Sink for the Thermal Management of Photovoltaics", Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1598-1603, 2011. https://doi.org/10.1016/j.solmat.2011.01.008
[48] A. Hasan, S. McCormack, M. Huang, J. Sarwar, & B. Norton, "Increased Photovoltaic Performance Through Temperature Regulation by Phase Change Materials: Materials Comparison in Different Climates", Solar Energy, vol. 115, pp. 264-276, 2015. https://doi.org/10.1016/j.solener.2015.02.003
[49] L. Tan, A. Date, G. Fernandes, B. Singh, & S. Ganguly, "Efficiency Gains of Photovoltaic System Using Latent Heat Thermal Energy Storage", Energy Procedia, vol. 110, pp. 83-88, 2017. https://doi.org/10.1016/j.egypro.2017.03.110
[50] M. Rajvikram and S. Gangatharan, "Experimental Study Conducted for the Identification of Best Heat Absorption and Dissipation Methodology in Solar Photovoltaic Panel", Solar Energy, vol. 193, pp. 283-292, 2019. https://doi.org/10.1016/j.solener.2019.09.053
[51] R. Ahmadi, F. Monadinia, & M. Maleki, "Passive/Active Photovoltaic-Thermal (PVT) System Implementing Infiltrated Phase Change Material (PCM) in PS-CNT Foam", Solar Energy Materials and Solar Cells, vol. 222, pp. 110942, 2021. https://doi.org/10.1016/j.solmat.2020.110942
[52] G. Hernández, J. Carrillo, A. Bassam, M. Flota-Bañuelos, & L. Lopez, "A New Passive PV Heatsink Design to Reduce Efficiency Losses: A Computational and Experimental Evaluation", Renewable Energy, vol. 147, pp. 1209-1220, 2020. https://doi.org/10.1016/j.renene.2019.09.088
[53] M. Yousef, M. Sharaf, & A. Huzayyin, "Energy, Exergy, Economic, and Enviroeconomic Assessment of a Photovoltaic Module Incorporated with a Paraffin-Metal Foam Composite: An Experimental Study", Energy, vol. 238, pp. 121807, 2022. https://doi.org/10.1016/j.energy.2021.121807
[54] C. Zhao, W. Lu, & Y. Tian, "Heat Transfer Enhancement for Thermal Energy Storage using Metal Foams Embedded within Phase Change Materials (PCMs)", Solar Energy, vol. 84, no. 8, pp. 1402-1412, 2010. https://doi.org/10.1016/j.solener.2010.04.022
[55] D. Shastry and U. Arunachala, "Thermal Management of Photovoltaic Module with Metal Matrix Embedded PCM", Journal of Energy Storage, vol. 28, pp. 101312, 2020. https://doi.org/10.1016/j.est.2020.101312
[56] M. Salem, R. Ali, & K. Elshazly, "Experimental Investigation of the Performance of a Hybrid Photovoltaic/Thermal Solar System using Aluminium Cooling Plate with Straight and Helical Channels", Solar Energy, vol. 157, pp. 147-156, 2017. https://doi.org/10.1016/j.solener.2017.08.019
[57] H. Zheng, C. Wang, Q. Liu, Z. Tian, & X. Fan, "Thermal Performance of Copper Foam/Paraffin Composite Phase Change Material", Energy Conversion and Management, vol. 157, pp. 372-381, 2018. https://doi.org/10.1016/j.enconman.2017.12.023
[58] H. Hasan, K. Sopian, & A. Fudholi, "Photovoltaic Thermal Solar Water Collector Designed with a Jet Collision System", Energy, vol. 161, pp. 412-424, 2018. https://doi.org/10.1016/j.energy.2018.07.141
[59] Y. Zhou, X. Liu, & G. Zhang, "Performance of Buildings Integrated with a Photovoltaic–Thermal Collector and Phase Change Materials", Procedia Engineering, vol. 205, pp. 1337-1343, 2017. https://doi.org/10.1016/j.proeng.2017.10.109
[60] H. Bahaidarah, A. Subhan, P. Gandhidasan, & S. Rehman, "Performance Evaluation of a PV (Photovoltaic) Module by Back Surface Water Cooling for Hot Climatic Conditions", Energy, vol. 59, pp. 445-453, 2013. https://doi.org/10.1016/j.energy.2013.07.050
[61] H. Teo, P. Lee, & M. Hawlader, "An Active Cooling System for Photovoltaic Modules", Applied Energy, vol. 90, no. 1, pp. 309-315, 2012. https://doi.org/10.1016/j.apenergy.2011.01.017
[62] Y. Tanagnostopoulos, P. Themelis, A. Angelopoulos, & T. Fildisis, "Natural Flow Air Cooled Photovoltaics", AIP Conference Proceedings, pp. 1013-1018, 2010. https://doi.org/10.1063/1.3322300
[63] A. Waqas & J. Ji, "Thermal Management of Conventional PV Panel using PCM with Movable Shutters – A Numerical Study", Solar Energy, vol. 158, pp. 797-807, 2017. https://doi.org/10.1016/j.solener.2017.10.050
[64] C. Lai & L. Lu, "Hydrogel-based Thermal Regulation Strategies for Passive Cooling: A Review", Energy and Built Environtment, 2024. https://doi.org/10.1016/j.enbenv.2024.10.002
[65] E. Wilson, "Theoretical and Operational Thermal Performance of a ‘wet’ Crystalline Silicon PV Module under Jamaican Conditions", Renewable Energy, vol. 34, no. 6, pp. 1655-1660, 2009. https://doi.org/10.1016/j.renene.2008.10.024
[66] U. Rajput and J. Yang, "Comparison of Heat Sink and Water Type PV/T Collector for Polycrystalline Photovoltaic Panel Cooling", Renewable Energy, vol. 116, pp. 479-491, 2018. https://doi.org/10.1016/j.renene.2017.09.090
[67] M. Rad, A. Kasaeian, S. Mousavi, F. Rajaee, & A. Kouravand, "Empirical Investigation of a Photovoltaic-Thermal System with Phase Change Materials and Aluminum Shavings Porous Media", Renewable Energy, vol. 167, pp. 662-675, 2021. https://doi.org/10.1016/j.renene.2020.11.135
[68] A. Amr, A. Hassan, M. Abdel‐Salam, & A. El‐Sayed, "Enhancement of Photovoltaic System Performance via Passive Cooling: Theory Versus Experiment", Renewable Energy, vol. 140, pp. 88-103, 2019. https://doi.org/10.1016/j.renene.2019.03.048
[69] F. Bayrak, H. Öztop, & F. Selımefendıgıl, "Effects of Different Fin Parameters on Temperature and Efficiency for Cooling of Photovoltaic Panels under Natural Convection", Solar Energy, vol. 188, pp. 484-494, 2019. https://doi.org/10.1016/j.solener.2019.06.036
[70] F. Bayrak, H. Öztop, & F. Selımefendıgıl, "Experimental Study for the Application of Different Cooling Techniques in Photovoltaic (PV) Panels", Energy Conversion and Management, vol. 212, pp. 112789, 2020. https://doi.org/10.1016/j.enconman.2020.112789
[71] M. Sharaf, A. Huzayyin, & M. Yousef, "Performance Enhancement of Photovoltaic Cells using Phase Change Material (PCM) in Winter", Alexandria Engineering Journal, vol. 61, no. 6, pp. 4229-4239, 2022. https://doi.org/10.1016/j.aej.2021.09.044
[72] J. Lukaštšuk, J. Kurnitski, & M. Thalfeldt, "Measured Performance of Cooling Systems in Nearly Zero-Energy Office Buildings During Extreme Summers and Optimal Cooling Sizing", Energy and Buildings, vol. 353, pp. 116829, 2026. https://doi.org/10.1016/j.enbuild.2025.116829
[73] S. Wu, C. Chen, & L. Xiao, "Heat Transfer Characteristics and Performance Evaluation of Water-Cooled PV/T System with Cooling Channel above PV Panel", Renewable Energy, vol. 125, pp. 936-946, 2018. https://doi.org/10.1016/j.renene.2018.03.023
[74] A. Baloch, H. Bahaidarah, P. Gandhidasan, & F. Al‐Sulaiman, "Experimental and Numerical Performance Analysis of a Converging Channel Heat Exchanger for PV Cooling", Energy Conversion and Management, vol. 103, pp. 14-27, 2015. https://doi.org/10.1016/j.enconman.2015.06.018
[75] S. Shittu, G. Li, X. Zhao, Y. Akhlaghi, X. Ma, & M. Yu, "Comparative Study of a Concentrated Photovoltaic-Thermoelectric System With and Without Flat Plate Heat Pipe", Energy Conversion and Management, vol. 193, pp. 1-14, 2019. https://doi.org/10.1016/j.enconman.2019.04.055
[76] F. Bayrak, H. Öztop, & F. Selımefendıgıl, "Effects of Different Fin Parameters on Temperature and Efficiency for Cooling of Photovoltaic Panels under Natural Convection", Solar Energy, vol. 188, pp. 484-494, 2019. https://doi.org/10.1016/j.solener.2019.06.036
[77] M. Browne, B. Norton, & S. McCormack, "Heat Retention of a Photovoltaic/Thermal Collector with PCM", Solar Energy, vol. 133, pp. 533-548, 2016. https://doi.org/10.1016/j.solener.2016.04.024
[78] A. Shahsavar & M. Ameri, "Experimental Investigation and Modeling of a Direct-Coupled PV/T Air Collector", Solar Energy, vol. 84, no. 11, pp. 1938-1958, 2010. https://doi.org/10.1016/j.solener.2010.07.010
[79] F. Selımefendıgıl, F. Bayrak, & H. Öztop, "Experimental Analysis and Dynamic Modeling of a Photovoltaic Module with Porous Fins", Renewable Energy, vol. 125, pp. 193-205, 2018. https://doi.org/10.1016/j.renene.2018.02.002
[80] X. Chen, X. Li, X. Xia, C. Sun, & R. Liu, "Thermal Storage Analysis of a Foam-Filled PCM Heat Exchanger Subjected to Fluctuating Flow Conditions", Energy, vol. 216, pp. 119259, 2021. https://doi.org/10.1016/j.energy.2020.119259
[81] H. Teo, P. Lee, & M. Hawlader, "An Active Cooling System for Photovoltaic Modules", Applied Energy, vol. 90, no. 1, pp. 309-315, 2012. https://doi.org/10.1016/j.apenergy.2011.01.017
[82] M. Gholampour, M. Ameri, & M. Samani, "Experimental Study of Performance of Photovoltaic–Thermal Unglazed Transpired Solar Collectors (PV/UTCs): Energy, Exergy, and Electrical-to-Thermal Rational Approaches", Solar Energy, vol. 110, pp. 636-647, 2014. https://doi.org/10.1016/j.solener.2014.09.011
[83] A. Kasaeian, Y. Khanjari, S. Golzari, O. Mahian, & S. Wongwises, "Effects of Forced Convection on the Performance of a Photovoltaic Thermal System: An Experimental Study", Experimental Thermal and Fluid Science, vol. 85, pp. 13-21, 2017. https://doi.org/10.1016/j.expthermflusci.2017.02.012
[84] H. Saygın, R. Nowzari, N. Mirzaei, & L. Aldabbagh, "Performance Evaluation of a Modified PV/T Solar Collector: A Case Study in Design and Analysis of Experiment", Solar Energy, vol. 141, pp. 210-221, 2017. https://doi.org/10.1016/j.solener.2016.11.048
[85] J. Hallal, M. Hammoud, & T. Moussa, "Experimental Optimization of the Si Photovoltaic Panels Cooling System on Maximum Allowable Temperature Criteria", Renewable Energy Focus, vol. 35, pp. 178-181, 2020. https://doi.org/10.1016/j.ref.2020.10.007
[86] M. Pathak, P. Sanders, & J. Pearce, "Optimizing Limited Solar Roof Access by Exergy Analysis of Solar Thermal, Photovoltaic, and Hybrid Photovoltaic Thermal Systems", Applied Energy, vol. 120, pp. 115-124, 2014. https://doi.org/10.1016/j.apenergy.2014.01.041
[87] M. Qasim, H. Ali, M. Khan, N. Arshad, D. Khaliq, Z. Ali et al., "The Effect of using Hybrid Phase Change Materials on Thermal Management of Photovoltaic Panels – An Experimental Study", Solar Energy, vol. 209, pp. 415-423, 2020. https://doi.org/10.1016/j.solener.2020.09.027
[88] A. Mays, R. Ammar, M. Hawa, M. Akroush, F. Hachem, M. Khaled et al., "Improving Photovoltaic Panel Using Finned Plate of Aluminum", Energy Procedia, vol. 119, pp. 812-817, 2017. https://doi.org/10.1016/j.egypro.2017.07.103
[89] F. Grubišić‐Čabo, S. Nižetić, D. Čoko, I. Marinić-Kragić, & A. Papadopoulos, "Experimental Investigation of the Passive Cooled Free-Standing Photovoltaic Panel with Fixed Aluminum Fins on the Backside Surface", Journal of Cleaner Production, vol. 176, pp. 119-129, 2018. https://doi.org/10.1016/j.jclepro.2017.12.149
[90] N. Elminshawy, M. Ghandour, H. Gad, D. El-Damhogi, K. El-Nahhas, & M. Addas, "The Performance of a Buried Heat Exchanger System for PV Panel Cooling under Elevated Air Temperatures", Geothermics, vol. 82, pp. 7-15, 2019. https://doi.org/10.1016/j.geothermics.2019.05.012
[91] M. Özgören, M. Aksoy, C. Bakir, & S. Doğan, "Experimental Performance Investigation of Photovoltaic/Thermal (PV–T) System", EPJ Web of Conferences, vol. 45, pp. 01106, 2013. https://doi.org/10.1051/epjconf/20134501106
[92] E. Johnston, P. Szabo, & N. Bennett, "Cooling Silicon Photovoltaic Cells using Finned Heat Sinks and the Effect of Inclination Angle", Thermal Science and Engineering Progress, vol. 23, pp. 100902, 2021. https://doi.org/10.1016/j.tsep.2021.100902
[93] A. Lafta, M. Mansour, & H. Hamood, "Numerical Investigation of Performance Study of a Solar Stepped Still using Desalination System with Cooling", AIP Conference Proceedings, vol. 3303, pp. 060011, 2025. https://doi.org/10.1063/5.0263005
[94] M. Mansour and Q. Doos, "Developing Expert System for Defects Diagnostic for Specific Oil Refinery Pipelines via using Artificial Neural Network", AIP Conference Proceedings, vol. 3303, pp. 060010, 2025. https://doi.org/10.1063/5.0261530
[95] Z. Ibrahim, M. Mansour, A. Lafta, & A. Ugla, "Numerical Investigation to Evaluate the Extrusion Process of Power Cable Designed by CFD Software", International Review of Mechanical Engineering (IREME), vol. 18, no. 8, pp. 384, 2024. https://doi.org/10.15866/ireme.v18i8.24443
[96] M. Mansour, "Assessing the Role of Circular Economy Principles in Reducing Waste by Sustainable Manufacturing Practices: A Review", Sigma Journal of Engineering and Natural Sciences – Sigma Mühendislik Ve Fen Bilimleri Dergisi, pp. 1886-1896, 2025. https://doi.org/10.14744/sigma.2024.00155
[97] M. Mansour, I. Erabee, & A. Lafta, "Comprehensive Analysis of Water Based Emulsion Drilling Fluids in GHARRAF Oil Field in Southern Iraq: Properties, Specifications, and Practical Applications", International Journal of Computational Methods and Experimental Measurements, vol. 12, no. 3, pp. 297-307, 2024. https://doi.org/10.18280/ijcmem.120310
[98] M. Mansour and K. Al-hamdani, "Key Performance Indicators for Evaluating the Efficiency of Production Processes in Food Industry", Passer Journal of Basic and Applied Sciences, vol. 6, no. 2, pp. 494-504, 2024. https://doi.org/10.24271/psr.2024.450557.1555
[99] M. Mansour and K. Al-hamdani, "Tabu Search Algorithm to Optimize Layout Design for a Multi Objective Plant Function", Passer Journal of Basic and Applied Sciences, vol. 6, no. 2, pp. 446-452, 2024. https://doi.org/10.24271/psr.2024.450554.1554
[100] N. Najm and M. Mansour, "The Role of Waste Reduction Technology in Sustainable Recycling of Waste Paper at Thi-Qar University", International Journal of Sustainable Development and Planning, vol. 19, no. 8, pp. 3153-3163, 2024. https://doi.org/10.18280/ijsdp.190828
[101] M. Mansour and A. Ugla, "Employing Genetic Algorithm to Optimize Manufacturing Cell Design", Academic Journal of Manufacturing Engineering, vol. 22, no. 3, pp. 53-61, 2024. https://www.ajme.ro/PDF_AJME_2024_3/L7.pdf
[102] A. Lafta and M. Mansour, "Employing Artificial Neural Networks to Forecast Gas Consumption by A Power Plant", Academic Journal of Manufacturing Engineering, vol. 23, no. 1, pp. 72-86, 2025. https://www.ajme.ro/PDF_AJME_2025_1/L8.pdf
[103] M. Abdulhasan, H. Abdulaali, Q. Al-Doori, H. Dakheel, R. Alabdan, F. Alhachami et al., "Physicochemical and Heavy Metal Properties of Soil Samples in Waste Disposal Site, Suq Al-Shyokh, Iraq", 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 345-350, 2022. https://doi.org/10.1109/ismsit56059.2022.9932750
[104] P. Valeh‐e‐Sheyda, M. Rahimi, A. Parsamoghadam, & M. Masahi, "Using a Wind-Driven Ventilator to Enhance a Photovoltaic Cell Power Generation", Energy and Buildings, vol. 73, pp. 115-119, 2014. https://doi.org/10.1016/j.enbuild.2013.12.052
[105] A. Shahsavar, M. Salmanzadeh, M. Ameri, & P. Talebizadehsardari, "Energy Saving in Buildings by using the Exhaust and Ventilation Air for Cooling of Photovoltaic Panels", Energy and Buildings, vol. 43, no. 9, pp. 2219-2226, 2011. https://doi.org/10.1016/j.enbuild.2011.05.003
[106] Y. Assoa and C. Ménézo, "Dynamic Study of a New Concept of Photovoltaic–Thermal Hybrid Collector", Solar Energy, vol. 107, pp. 637-652, 2014. https://doi.org/10.1016/j.solener.2014.05.035
[107] S. Nada, D. El-Nagar, & H. Hussein, "Improving the Thermal Regulation and Efficiency Enhancement of PCM-Integrated PV Modules using Nano Particles", Energy Conversion and Management, vol. 166, pp. 735-743, 2018. https://doi.org/10.1016/j.enconman.2018.04.035
[108] S. Mousavi, A. Kasaeian, M. Shafii, & M. Jahangir, "Numerical Investigation of the Effects of a Copper Foam Filled with Phase Change Materials in a Water-Cooled Photovoltaic/Thermal System", Energy Conversion and Management, vol. 163, pp. 187-195, 2018. https://doi.org/10.1016/j.enconman.2018.02.039
[109] U. Sajjad, M. Amer, H. Ali, A. Dahiya, & N. Abbas, "Cost Effective Cooling of Photovoltaic Modules to Improve Efficiency", Case Studies in Thermal Engineering, vol. 14, pp. 100420, 2019. https://doi.org/10.1016/j.csite.2019.100420
[110] E. Cüce, T. Bali, & S. Sekuçoğlu, "Effects of Passive Cooling on Performance of Silicon Photovoltaic Cells", International Journal of Low-Carbon Technologies, vol. 6, no. 4, pp. 299-308, 2011. https://doi.org/10.1093/ijlct/ctr018
[111] N. Elminshawy, M. Ghandour, H. Gad, D. El-Damhogi, K. El-Nahhas, & M. Addas, "The Performance of a Buried Heat Exchanger System for PV Panel Cooling under Elevated Air Temperatures", Geothermics, vol. 82, pp. 7-15, 2019. https://doi.org/10.1016/j.geothermics.2019.05.012
[112] J. Alves, J. Silva, G. Mumbach, R. Sena, R. Machado, & C. Marangoni, "Prospection of Catole Coconut (Syagrus cearensis) as a New Bioenergy Feedstock: Insights from Physicochemical Characterization, Pyrolysis Kinetics, and Thermodynamics Parameters", Renewable Energy, vol. 181, pp. 207-218, 2022. https://doi.org/10.1016/j.renene.2021.09.053
[113] Y. Zheng, D. Zhang, J. Wu, F. Jiang, G. Xing, & X. Su, "Evolution of LeTID Defects in Industrial Multi-Crystalline Silicon Wafers under Laser Illumination - Dependency of Wafer Position in Brick and Temperature", Solar Energy Materials and Solar Cells, vol. 218, pp. 110735, 2020. https://doi.org/10.1016/j.solmat.2020.110735
[114] A. Hamed, L. Al‐Ghussain, M. Hassan, & A. Annuk, "Techno-Economic Analysis for Optimal Configurations of PV Systems with Back Reflectors", Energy Reports, vol. 8, pp. 14979-14996, 2022. https://doi.org/10.1016/j.egyr.2022.11.053
[115] S. Alka, S. Shahir, N. Ibrahim, J. Mohammed, D. Vo, & F. Manan, "Arsenic Removal Technologies and Future Trends: A Mini Review", Journal of Cleaner Production, vol. 278, pp. 123805, 2021. https://doi.org/10.1016/j.jclepro.2020.123805
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 mustafa mansour

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abstract views: 40
,
PDF Downloads: 11





