Off-Grid Solar System Monitoring based on ESP-32 and INA219 In Pesanggrahan Gordomulyo

Authors

  • Zufar Permana Muqorrobin Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya, Surabaya, Indonesia
  • Akhmad Nawawi Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya
  • Achmad Aris Ardani Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya
  • Singgang Putra Setia Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya
  • Reza Rahmadian Department of Electrical Engineering, Faculty of Vocational Studies, Universitas Negeri Surabaya

DOI:

https://doi.org/10.26740/vubeta.v1i2.34859

Keywords:

PV Solar Panel, HT (Handy Talkie) , ESP32, Monitoring , Innovation

Abstract

The main problem in the highland area of Pesanggarahan Gordo Mulyo is the difficulty of monitoring and maintaining PLTS due to the remote location and no reliable communication signal. As a solution, this research developed a remote PLTS monitoring system using ESP32 and Handy Talkie communication, which allows automatic data transmission without internet connection. This research contributes to the optimization of the monitoring system adapted to the surrounding environmental conditions. Testing has 3 categories, in the PV solar panel monitoring test, the highest voltage is 37.1 V, the highest current is 2.1 A, and the maximum power generated is 81 W. Error calculations are also carried out to see the performance of the INA219 sensor with a multimeter measuring instrument, the test results for voltage, current, and power are 0.3%, 1.8%, and 1.26%. The last test is sending data in the form of voice through HT transmission, the data sent is similar to the data received in five tests. Based on each test, this tool has a small error rate, so it can be one of the innovations in the world of monitoring solar power plants.

References

[1] M. J. Montes, R. Guedez, J. I. Linares, and M. A. Reyes-Belmonte, “Advances in solar thermal power plants based on pressurised central receivers and supercritical power cycles”, Energy Conversion and Management, vol. 293, 2023. doi: https://doi.org/10.1016/j.enconman.2023.117454.

[2] J. I. Linares, E. Arenas, M. J. Montes, A. Cantizano, J. R. Pérez-Domínguez, and J. Porras, “Direct coupling of pressurized gas receiver to a brayton supercritical CO2 power cycle in solar thermal power plants”, Case Studies in Thermal Engineering, vol. 61, 2024. doi: https://doi.org/10.1016/j.csite.2024.105021.

[3] X. Guo, “Research on desalination performance of novel free-interface evaporation synergism membrane distillation module: Suitable for solar drive scenarios”, Separation and Purification Technology, vol. 316, 2025. doi: https://doi.org/10.1016/j.seppur.2024.131350

[4] M. S. Taslimi, A. Khosravi, Y. K. Nugroho, and N. Rytter, “Optimization and analysis of methanol production from CO2 and solar-driven hydrogen production: A Danish case study”, International Journal of Hydrogen Energy, vol. 69, pp. 466–476, 2024. doi: https://doi.org/10.1016/j.ijhydene.2024.05.033.

[5] T. Lehtola,” Solar energy and wind power supply supported by battery storage and Vehicle to Grid operations”, Electric Power Systems Research, vol. 228, 2024. doi: https://doi.org/10.1016/j.epsr.2023.110035.

[6] Z. Balas, K. Tokarz, B. Zielinski, and T. Guzniczak, “Research on the behaviour of Bluetooth Low Energy protocol in the heart rate monitoring application”, Procedia Computer Science, pp. 63–69, 2023. doi: https://doi.org/10.1016/j.procs.2023.09.092.

[7] O. Mohammed, A. A. Rachida, D. Olivier, and M. Abdelaziz, “An open source and low-cost Smart Auditorium”, Procedia Computer Science, pp. 518–523, 2021. doi: https://doi.org/10.1016/j.procs.2021.07.076.

[8] A. Kamunen, P. Haddington, and I. Rautiainen, “It seems to be some kind of an accident: Perception and team decision-making in time critical situations”, Journal of Pragmatics, vol. 195, pp. 7–30, 2022. doi: https://doi.org/10.1016/j.pragma.2022.04.001.

[9] D. Ruslanjari, E. W. Safitri, F. A. Rahman, and C. Ramadhan, “ICT for public awareness culture on hydrometeorological disaster”, International Journal of Disaster Risk Reduction, vol. 92, 2023. doi: https://doi.org/10.1016/j.ijdrr.2023.103690.

[10] M. J. Espinosa-Gavira, A. Agüera-Pérez, J. C. Palomares-Salas, J. M. Sierra-Fernandez, P. Remigio-Carmona, and J. J. González de-La-Rosa, “Characterization and Performance Evaluation of ESP32 for Real-time Synchronized Sensor Networks”, pp. 261–268, 2024. doi: https://doi.org/10.1016/j.procs.2024.05.104.

[11] I. Anshori et al., “Design of smartphone-controlled low-cost potentiostat for cyclic voltammetry analysis based on ESP32 microcontroller”, Sensing and Biosensing Research, vol. 36, 2022. doi: https://doi.org/10.1016/j.sbsr.2022.100490.

[12] H. J. El-Khozondar et al., “A smart energy monitoring system using ESP32 microcontroller”, e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 9, 2024. doi: https://doi.org/10.1016/j.prime.2024.100666.

[13] B.Patra, P. Nema, M.Z. Khan, O. Khan, “Optimization of solar energy using MPPT techniques and industry 4.0 modelling”, Sustainable Operations and Computers, vol.4, pp. 22-28, 2023. doi: https://doi.org/ 10.1016/j.susoc.2022.10.001

[14] M. Hasan, A. H. Sabry, and H. Serra Altinoluk, “Maximizing energy transfer of solar-battery charge controller using voltage balancing strategy”, Results in Engineering, vol. 23, 2024. doi: https://doi.org/10.1016/j.rineng.2024.102604.

[15] K. Anada Rao et al., “MPPT Charge Controller using Fuzzy Logic for Battery Integrated with Solar Photovoltaic System”, Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 42, no. 2, pp. 171- 182, 2025. doi: https://doi.org/10.37934/ARASET.47.2.171182

[16] A. Sedunov, N. Sedunov, H. Salloum, A. Sutin,” Low-cost multichannel radio direction finding system based on software-defined radio”, IEEE International Symposium on Technologies for Homeland Security, 2022. doi: https://doi.org/10.1109/HST56032.2022.10025440

[17] N. Busaeri et al., “Design and Implementation of Real-Time Sensors for Three-Phase Induction Motor Performance Monitoring using Internet of Thing (IoT)”, Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 49, no. 2, pp. 162-175, 2025. doi: https://doi.org/10.37934/araset.49.2.162175

[18] A. Supardi, M. Y. Raya, and R. S. Anwar, “Development of a Low-Cost Portable Hydro and Wind Power as Emergency Power Source”, Journal of Physics, 2021. doi: https://doi.org/10.1088/1742-6596/1858/1/012049.

[19] M. M. Ismail, I. Dincer, Y. Bicer, and M. Z. Saghir, “Assessment of a Solar-Powered Trigeneration Plant Integrated with Thermal Energy Storage Using Phase Change Materials”, Process Safety and Environmental Protection, vol. 91, pp. 1339-1352, 2024. doi: https://doi.org/10.1016/j.psep.2024.09.012.

[20] A. Couto and A. Estanqueiro, “Wind power plants hybridised with solar power: A generation forecast perspective”, Journal of Cleaner Production, vol. 423, 2023. doi: https://doi.org/10.1016/j.jclepro.2023.138793.

[21] R. Villena-Ruiz, S. Martín-Martínez, A. Honrubia-Escribano, F. J. Ramírez, and E. Gómez-Lázaro, “Solar PV power plant revamping: Technical and economic analysis of different alternatives for a Spanish case”, Journal of Cleaner Production, vol. 446, 2024. doi: https://doi.org/10.1016/j.jclepro.2024.141439.

[22] I. Jamil et al., “Predictive evaluation of solar energy variables for a large-scale solar power plant based on triple deep learning forecast models”, Alexandria Engineering Journal, vol. 76, pp. 51–73, 2023. doi: https://doi.org/10.1016/j.aej.2023.06.023.

[23] D. Venkateswaran and Y. Cho, “Efficient solar power generation forecasting for greenhouses: A hybrid deep learning approach”, Alexandria Engineering Journal, vol. 91, pp. 222–236, 2024. doi: https://doi.org/10.1016/j.aej.2024.02.004.

[24] K. Nuortimo, J. Harkonen, and K. Breznik, “Global, regional, and local acceptance of solar power”, Renewable and Sustainable Energy Reviews, vol. 193, 2024. doi: https://doi.org/10.1016/j.rser.2024.114296.

[25] R. Thonig and J. Lilliestam, “Cross-technology legitimacy feedback: The politics of policy-led innovation for complementarity in concentrating solar power”, Environmental Innovation and Societal Transitions, vol. 52, 2024, doi: https://doi.org/10.1016/j.eist.2024.100884.

[26] M. Bin Yeamin et al., “Simulation and survey-based feasibility study of concentrated solar plant in northern and central Bangladesh”, Results in Engineering, vol. 23, 2024. doi: https://doi.org/10.1016/j.rineng.2024.102711.

[27] M.S. Saleem, N. Abas, “Optimal design of renewable driven polygeneration system: A novel approach integrating TRNSYS-GenOpt linkage”, Cleaner Engineering and Technology, vol. 24, 2025. doi: https://doi.org/10.1016/j.clet.2024.100856

[28] A.Z. Arshad, A.W.M. Zuhdi, A.D Azhar, C.F Chau, A. Ghazali, “Advancements in maximum power point tracking for solar charge controllers”, Renewable and Sustainable Energy Reviews, vol. 210, 2025. doi: https://doi.org/10.1016/j.rser.2024.115208.

[29] P. R. Pillewar, S. N. Patil, and M. G. Unde, “An implementation of solar PV array based multifunctional electrical vehicle charger”, Materials Today: Proceedings, vol. 68, pp. A12-A18, 2022, doi: https://doi.org/10.1016/j.matpr.2023.01.003.

[30] P. Singla et al., “Design and simulation of 4 kW solar power-based hybrid EV charging station”, Scientific Reports, vol. 14, no. 1, 2024. doi: https://doi.org/10.1038/s41598-024-56833-5

[31] G.N. Gusev, O.V. Zhdaneev, M.E. Gainullin, A.Yu Argatsev, D.N. Lapkin, “Solar PV system with maximum power tracking”, International Journal of Hydrogen Energy, vol. 87, pp. 258-267, 2024. doi: https://doi.org/10.1016/j.ijhydene.2024.08.441

[32] M. S. Islam, H. Mohamad, and S. Z. Mohammad Noor, “Development of a New Controller for Solar Home System: PWM Charge Controller & DC to DC Converter (12V to 120V)”, Journal of Electrical & Electronic Systems Research, vol. 20, no. APR2022, pp. 41–50, 2022. doi: https://doi.org/10.24191/jeesr.v20i1.006.

[33] J. Reegan, A. Ghana Saravanan, “Optimized PI Control for PV-Powered PMBLDC Motor with SEPIC-Zeta Converter”, Journal of Electrical Engineering and Technology, vol. 19, no. 7, pp. 4215-4237, 2024. doi: https://doi.org/ 10.1007/s42835-024-01841-8.

[34] Kumuthawathe Ananda-Rao et al., “MPPT Charge Controller using Fuzzy Logic for Battery Integrated with Solar Photovoltaic System”, Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 47, no. 2, pp. 171–182, 2024. doi: https://doi.org/10.37934/araset.47.2.171182.

[35] M. Nur-E-Alam et al., “Optimization of energy management in Malaysian microgrids using fuzzy logic-based EMS scheduling controller”, Scientific Reports, vol. 15, no. 1, 2025. doi: https://doi.org/10.1038/s41598-024- 82360-4.

[36] X. Yu et al., “Simulation and Optimization of a Hybrid Photovoltaic/Li-Ion Battery System”, Batteries, vol. 10, no. 11, 2024. doi: https://doi.org/10.3390/batteries10110393

[37] W. Indrasari, G. Rama, and R. N. Setiadi, “Circuit Simulation of the DC-DC Converter with Variation of PWM Load in Solar Panel Electrical Energy Storage”, Journal of Physics, 2022. doi: https://doi.org/10.1088/1742- 6596/2377/1/012020.

[38] A. Zhaxalikov, A. Mombekov, and Z. Sotsial, “Surveillance Camera Using Wi-Fi Connection”, Procedia Computer Science, pp. 721–726, 2024. doi: https://doi.org/10.1016/j.procs.2023.12.147.

[39] A. Abu Sneineh and A. A. A. Shabaneh, “Design of a smart hydroponics monitoring system using an ESP32 microcontroller and the Internet of Things”, MethodsX, vol. 11, 2023. doi: https://doi.org/10.1016/j.mex.2023.102401.

[40] M. J. A. Baig, M. T. Iqbal, M. Jamil, and J. Khan, “Design and implementation of an open-Source IoT and blockchain-based peer-to-peer energy trading platform using ESP32-S2, Node-Red and, MQTT protocol”, Energy Reports, vol. 7, pp. 5733–5746, 2021. doi: https://doi.org/10.1016/j.egyr.2021.08.190.

[41] M. R. Pretel, V. Vidal, D. Kienigiel, and C. Forcato, “A low-cost and open-hardware portable 3-electrode sleep monitoring device”, HardwareX, vol. 19, 2024. doi: https://doi.org/10.1016/j.ohx.2024.e00553.

[42] N. Abekiri, A. Rachdy, M. Ajaamoum, B. Nassiri, L. Elmahni, And Y. Oubail, “Platform for hands-on remote labs based on the ESP32 and NOD-red”, Scientific African, vol. 19, 2023. doi: https://doi.org/10.1016/j.sciaf.2022.e01502.

[43] T. Chen, X. Li, H. Li, and G. Zhu, “Deep learning-based fall detection using commodity Wi-Fi”, Journal of Information and Intelligence, vol. 2, no. 4, pp. 355–364, 2024. doi: https://doi.org/10.1016/j.jiixd.2024.04.001.

[44] P. Baskar, P. Kumar, S. Chidambaram, Y.K Choukiker, A. Bhowmick, “Performance of a nonlinear energy harvesting CR-enabled D2D network with censoring and NOMA”, Alexandria Engineering Journal, vol. 118, pp. 234-245, 2025. doi: https://doi.org/10.1016/j.aej.2025.01.006

[45] A. Es-saleh, M. bendaoued, S.Lakrit, S. Das, A.Faize, “Design aspects of MIMO antennas and its applications: A comprehensive review”, Results in Engineering, vol. 25, 2025. doi: https://doi.org/10.1016/j.rineng.2024.103797

[46] G. U. Nugraha, A. A. Nur, P. A. Pranantya, R. F. Lubis, and H. Bakti, ‘Analysis of groundwater potential zones using Dar-Zarrouk parameters in Pangkalpinang city, Indonesia’, Environment Development and Sustainability, vol. 25, no. 2, pp. 1876–1898, 2023. doi: https://doi.org/10.1007/s10668-021-02103-7.

[47] J. Lambert, R. Monahan, and K. Casey, “Power consumption profiling of a lightweight development board: Sensing with the INA219 and Teensy 4.0 microcontroller”, Electronics (Switzerland), vol. 10, no. 7, 2021. doi: https://doi.org/10.3390/electronics10070775.

[48] M.Z. Hussin, J. Jalani, M.H. Powdzi, S.M. Rejab, and M.K. Ishak, “Smart Robot Cleaner Using Internet of Things”, Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 46, no. 1, pp. 175- 186, 2025. doi: https://doi.org/10.37934/araset.46.1.175186.

[49] C. M. Nkinyam et al., “Design and implementation of a waterless solar panel cleaning system”, Unconventional

Resources, vol. 5, 2025. doi: https://doi.org/10.1016/j.uncres.2024.100131

[50] C.D. Le, C.P. Vo, D.L. Vu, T.H. Nguyen, K.K. Ahn, “Water electrification based triboelectric nanogenerator integrated harmonic oscillator for waste mechanical energy harvesting”, Energy Conversion and Management, vol. 251, 2022. Doi: https://doi.org/10.1016/j.enconman.2021.115014

[51] B. Liu, X. Li, Z. Li, P. He, “Construction of power load control and management terminal operation system based on machine learning technology”, Intelligent Decision Technologies, vol. 18, no. 4, pp. 2841-2854, 2024. doi: https://doi.org/0.3233/IDT-230239.

[52] A. Mariyaraj and S. P. Thankappan, “IoT-integrated smart energy management system with enhanced ANN controller for small-scale microgrid”, Electrical Engineering, vol. 106, no. 6, pp. 7363-7397, 2024. Doi: https://doi.org/10.1007/s00202-024-02448-y.

[53] H. Maghfiroh, J. T. Affandy, F. Adriyanto, and M. Nizam, “Single Phase Inverter with Power Monitoring using Arduino”, Journal of Physics, 2021. doi: https://doi.org/10.1088/1742-6596/1844/1/012016.

[54] Y. Zheng et al., “A Family of Hybrid Topologies for Efficient Constant-Current and Constant-Voltage Output of Magnetically Coupled Wireless Power Transfer Systems”, World Electric Vehicle Journal, vol. 15, no. 12, 2024. doi: https://doi.org/10.3390/wevj15120578

[55] U.Narayanan, P. Prajith, R.T Mathew, R. Alexandar, V.Vikraman, “Real Time Distracted Driver Detection Using Xception Architecture And Raspberry Pi”, Inteligencia Artificial, vol. 28, no. 75, pp. 15-29, 2025. doi: https://doi.org/10.4114/intartif.vol28iss75pp15-29

Downloads

Published

2024-12-01

How to Cite

[1]
zufar permana Muqorrobin, A. Nawawi, A. Aris Ardani, S. Putra Setia, and R. Rahmadian, “Off-Grid Solar System Monitoring based on ESP-32 and INA219 In Pesanggrahan Gordomulyo”, Vokasi Unesa Bull. Eng. Technol. Appl. Sci., vol. 1, no. 2, pp. 26–37, Dec. 2024.

Issue

Section

Article
Abstract views: 28 , PDF Downloads: 0