LoRa-based DC Motor Control and Yagi Antenna
DOI:
https://doi.org/10.26740/vubeta.v1i2.34852Keywords:
DC Motor, LoRa SX1278, two ways, Yagi Antenna, arduino unoAbstract
With the advancement of wireless communication technology, appropriate solutions such as LoRa SX1278, a long-range intermediate module with a wider range of IoT applications have become available. Nevertheless, problems still exist, especially in Non-Line of Sight (N-LoS) circumstances that can favor transmission. On the other hand, the demand for more effective motors in the household sector is growing, where DC motors provide purchasing managers with advanced and low-cost direct control capabilities over AC induction motors. Suggested approaches include the use of omni-directional antennas to increase the transmission range of LoRa as well as the application of DC motors to improve operational efficiency. This work develops the necessary techniques to increase the communication range of LoRa and optimize the use of DC motors in a small industrial setting. The research procedure consisted of investigating the automatic control of a 12V DC motor using an Arduino Uno and a DHT22 temperature sensor, and the study of remote control via LoRa SX1278 with switching mode logic. The tests conducted confirmed that the percentage error of DC motor control was 0.78%, 0.42%, and 0.26% in each category, respectively. There is also a clear 600m and 6250m data transmission range on the LoRa in two different locations, featuring the same switching logic. In summary, the embellishment of LoRa SX1278 through omni-directional antenna anchoring and mode switching logic on the LoRa SX1278-based DC motor control system displays efficient operation and extended transmission range, thus offering antimicrobial potential in household industrial applications.
References
[1] M. A. A. Khan, Z. U. Rehman, J. Ma, and H. Ma, “Optimization of LoRa for BIoT based on ML: A case of ESL”, Alexandria Engineering Journal, vol. 85, pp. 185–206, 2023. doi: https://doi.org/10.1016/j.aej.2023.10.064.
[2] L. Acosta-Garcia, J. Aznar-Poveda, A. J. Garcia-Sanchez, J. Garcia-Haro, and T. Fahringer, “Dynamic transmission policy for enhancing LoRa network performance: A deep reinforcement learning approach”, Internet of Things (Netherlands), vol. 24, 2023. doi: https://doi.org/10.1016/j.iot.2023.100974.
[3] J. N. Kabi, C. wa Maina, E. T. Mharakurwa, and S. W. Mathenge, “Low cost, LoRa based river water level data acquisition system”, HardwareX, vol. 14, 2023. doi: https://doi.org/10.1016/j.ohx.2023.e00414.
[4] B. Arratia, E. Rosas, C. T. Calafate, J. C. Cano, J. M. Cecilia, and P. Manzoni, “AlLoRa: Empowering environmental intelligence through an advanced LoRa-based IoT solution”, Computers Communications, vol. 218, pp. 44–58, 2024. doi: https://doi.org/10.1016/j.comcom.2024.02.014.
[5] M. Hutar, P. Brida, and J. Machaj, “Localization of IoT nodes in LoRa using RSS measurements”, Transportation Research Procedia, vol. 74, pp. 1142–1149, 2023. doi: https://doi.org/10.1016/j.trpro.2023.11.254.
[6] K. Z. Islam, D. Murray, D. Diepeveen, M. G. K. Jones, and F. Sohel, “LoRa-based outdoor localization and tracking using unsupervised symbolization”, Internet of Things (Netherlands), vol. 25, 2024. doi: https://doi.org/10.1016/j.iot.2023.101016.
[7] A. S. Lutakamale, H. C. Myburgh, and A. de Freitas, “RSSI-based fingerprint localization in LoRaWAN networks using CNNs with squeeze and excitation blocks”, Ad Hoc Networks, vol. 159, 2024. doi: https://doi.org/10.1016/j.adhoc.2024.103486.
[8] R. Anzum, “Factors that affect LoRa Propagation in Foliage Medium”, Procedia Computer Science, vol. 194, pp. 149–155, 2021. doi: https://doi.org/10.1016/j.procs.2021.10.068.
[9] L. Aarif, M. Tabaa, and H. Hachimi, “Experimental test and performance of RSSI-based indoor localization in LoRa Networks”, Procedia Computer Science, vol. 203, pp. 420–425, 2022. doi: https://doi.org/10.1016/j.procs.2022.07.055.
[10] R. S. Prieto Estacio, D. A. Bravo Montenegro, and C. F. Rengifo Rodas, “Dataset of audio signals from brushless DC motors for predictive maintenance”, Data Brief, vol. 50, 2023. doi: https://doi.org/10.1016/j.dib.2023.109569.
[11] C. C. Huang and C. C. Mo, “Surface magnetic flux density optimization considering effect of aligned magnetic field molding conditions of ring-shaped multi-pole anisotropic ferrite permanent magnet for DC motors”, Heliyon, vol. 10, no. 7, 2024. doi: https://doi.org/10.1016/j.heliyon.2024.e27774.
[12] R. R. Guerra, A. Vizziello, P. Savazzi, E. Goldoni, and P. Gamba, “Forecasting LoRaWAN RSSI using weather parameters: A comparative study of ARIMA, artificial intelligence and hybrid approaches”, Computer Networks, vol. 243, 2024. doi: https://doi.org/10.1016/j.comnet.2024.110258.
[13] M. A. Haque et al., “Quasi-Yagi antenna design for LTE applications and prediction of gain and directivity using machine learning approaches”, Alexandria Engineering Journal, vol. 80, pp. 383–396, 2023. doi: https://doi.org/10.1016/j.aej.2023.08.059.
[14] H. Chiroma et al., “Large scale survey for radio propagation in developing machine learning model for path losses in communication systems”, Scientific African, vol. 19, 2023. doi: https://doi.org/10.1016/j.sciaf.2023.e01550.
[15] R. K. Garg, J. Bhola, and S. K. Soni, “Healthcare monitoring of mountaineers by low power Wireless Sensor Networks”, Inform Medicine Unlocked, vol. 27, 2021. doi: https://doi.org/10.1016/j.imu.2021.100775.
[16] Y. Cui et al., “A survey of mechanical antennas applied for low-frequency transmitting”, iScience, vol. 26, no. 1, 2023. doi: https://doi.org/10.1016/j.isci.2022.105832
[17] T. Sharma, A. Kumar, N. Saini, and R. K. Gupta, “Traffic-free emergency health corridor”, Scientific African, vol. 22, 2023. doi: https://doi.org/10.1016/j.sciaf.2023.e01960.
[18] M. Radonjić, Ž. Zečević, and B. Krstajić, “An IoT System for Real-Time Monitoring of DC Motor Overload”, Electronics (Switzerland), vol. 11, no. 10, 2022. doi: https://doi.org/10.3390/electronics11101555.
[19] G. Swayash, M. Om, M. Rohit, M. Vaibhavi, and N. Mini, “IoT Based DC Motor Speed Control for Surface Operated Rover”, Asia Pacific Conferences, 2024. doi: https://doi.org/10.1109/APCIT62007.2024.10673572.
[20] A. Wakili, S. Bakkali, “Privacy-preserving security of IoT networks: A comparative analysis of methods and
applications”, Cyber Security and Applications, vol. 3, 2025. doi: https://doi.org/10.1016/j.csa.2025.100084.
[21] K. Dattatraya and R. Singh R, “IoT integrated adaptive fault tolerant control for induction motor based critical load applications”, Engineering Science and Technology, vol. 51, 2024. doi: https://doi.org/10.1016/j.jestch.2023.101585.
[22] H. Guerrero-Osuna et al., “Developing a Cloud and IoT-Integrated Remote Laboratory to Enhance Education 4.0: An Approach for FPGA-Based Motor Control”, Applied Sciences (Switzerland), vol. 14, no. 22, 2024. doi: https://doi.org/10.3390/app142210115
[23] P. Vinoth Kumar, S. Priya, D. Gunapriya, M. Batumalay, “Novel Battery Management with Fuzzy Tuned Low Voltage Chopper and Machine Learning Controlled Drive for Electric Vehicle Battery Management: A Pathway Towards SDG”, Journal of Applied Data Sciences, vol. 5, no. 3, pp. 936-945, 2024. doi: https://doi.org/10.47738/jads.v5i3.236
[24] M. Hayouni, T. H. Vuong, and F. Choubani, “Wireless IoT universal approach based on Allan variance method for detection of artificial vibration signatures of a DC motor’s shaft and reconstruction of the reference signal”, IET Wireless Sensor Systems, vol. 12, no. 3–4, pp. 81–92, 2022. doi: https://doi.org/10.1049/wss2.12038.
[25] D. A. N. K. Suhermanto et al., “Monitoring DC Motor Based on LoRa and IOT”, Journal of Robotics and Control (JRC), vol. 5, no. 1, pp. 54–61, 2024. doi: https://doi.org/10.18196/jrc.v5i1.19642.
[26] B. Han, Y. Li, X. Wang, H. Li, and J. Huang, “FLoRa: Sequential fuzzy extractor based physical layer key generation for LPWAN”, Future Generation Computer Systems, vol. 140, pp. 253–265, 2023. doi: https://doi.org/10.1016/j.future.2022.10.018.
[27] V. Moysiadis, T. Lagkas, V. Argyriou, A. Sarigiannidis, I. D. Moscholios, and P. Sarigiannidis, “Extending ADR mechanism for LoRa enabled mobile end-devices”, Simulation Modelling Practice and Theory, vol. 113, 2021. doi: https://doi.org/10.1016/j.simpat.2021.102388.
[28] L. Moiroux-Arvis, C. Cariou, and J.-P. Chanet, “Evaluation of LoRa technology in 433-MHz and 868-MHz for underground to aboveground data transmission”, Computers and Electronics in Agriculture, vol. 194, 2022. doi: https://doi.org/10.1016/j.compag.2022.106770
[29] J. R. Santana, P. Sotres, J. Pérez, L. Sánchez, J. Lanza, and L. Muñoz, “Assessing LoRaWAN radio propagation for smart parking service: An experimental study”, Computer Networks, vol. 235, 2023. doi: https://doi.org/10.1016/j.comnet.2023.109962.
[30] W. A. Jabbar, S. Annathurai, T. A. Tajul, and M. F. Mohd Fauzi, “Smart energy meter based on a long-range wide-area network for a stand-alone photovoltaic system”, Expert Systems with Applications, vol. 197, 2022. doi: https://doi.org/10.1016/j.eswa.2022.116703.
[31] Y. Toschke et al., “Distributed LoRa based CO2 monitoring network – A standalone open-source system for contagion prevention by controlled ventilation”, HardwareX, vol. 11, 2022. doi: https://doi.org/10.1016/j.ohx.2022.e00261.
[32] S. Abdulmalek, A. Nasir, and W. A. Jabbar, “LoRaWAN-based hybrid internet of wearable things system implementation for smart healthcare”, Internet of Things (Netherlands), vol. 25, 2024. doi: https://doi.org/10.1016/j.iot.2024.101124.
[33] Y. Chu, P. Mitchell, D. Grace, J. Roberts, D. White, and T. Mickus, “IRIS: A low duty cycle cross-layer protocol for long-range wireless sensor networks with low power budget”, Computer Networks, vol. 225, 2023. doi: https://doi.org/10.1016/j.comnet.2023.109666.
[34] F. Busacca, S. Mangione, S. Palazzo, F. Restuccia, and I. Tinnirello, “SDR-LoRa, an open-source, full-fledged implementation of LoRa on Software-Defined-Radios: Design and potential exploitation”, Computer Networks, vol. 241, 2024. doi: https://doi.org/10.1016/j.comnet.2024.110194.
[35] Y. Utepov et al., “Advancing sanitary surveillance: Innovating a live-feed sewer monitoring framework for effective water level and chamber cover detections”, Heliyon, vol. 10, no. 6, 2024. doi: https://doi.org/10.1016/j.heliyon.2024.e27395.
[36] P. Vandôme et al., “Making technological innovations accessible to agricultural water management: Design of a low-cost wireless sensor network for drip irrigation monitoring in Tunisia”, Smart Agricultural Technology, vol. 4, 2023. doi: https://doi.org/10.1016/j.atech.2023.100227.
[37] C. Garrido-Hidalgo, L. Roda-Sanchez, F. J. Ramírez, A. Fernández-Caballero, and T. Olivares, “Efficient online resource allocation in large-scale LoRaWAN networks: A multi-agent approach”, Computer Networks, vol. 221, 2023. doi: https://doi.org/10.1016/j.comnet.2022.109525.
[38] M. R. M. Veeramanickam, B. Venkatesh, L. A. Bewoor, Y. W. Bhowte, K. Moholkar, and J. L. Bangare, “IoT based smart parking model using Arduino UNO with FCFS priority scheduling”, Measurement: Sensors, vol. 24, 2022. doi: https://doi.org/10.1016/j.measen.2022.100524.
[39] M. S. Fischer and M. C. Fischer, “Cost-effective, open-source light shutters with Arduino control”, HardwareX, vol. 19, 2024. doi: https://doi.org/10.1016/j.ohx.2024.e00548.
[40] T. Tichter, M. Gernhard, and P. C. K. Vesborg, “PolArStat: An Arduino based potentiostat for low-power electrochemical applications”, Electrochimica Acta, vol. 469, 2023. doi: https://doi.org/10.1016/j.electacta.2023.143119.
[41] A. Shnier, F. Otieno, C. Billing, D. Wamwangi, and D. G. Billing, “Robust Arduino controlled spin coater using a novel and simple gravity chuck design”, HardwareX, vol. 14, 2023. doi: https://doi.org/10.1016/j.ohx.2023.e00422.
[42] A. Bekasiewicz and V. Waladi, “Filter-Hilbert method for automatic correction of non-anechoic antenna measurements with embedded self-calibration mechanism”, Measurement: Journal of the international measurement confederation, vol. 222, 2023. doi: https://doi.org/10.1016/j.measurement.2023.113705.
[43] M. S. Ellis, A. R. Ahmed, J. J. Kponyo, K. O. Gyasi, K. S. O. Kwakye, and S. Ameyaw, “Improved bandwidth and F/B ratio of a CPW-fed planar monopole antenna”, Heliyon, vol. 8, no. 8, 2022. doi: https://doi.org/10.1016/j.heliyon.2022.e10037.
[44] A. Bekasiewicz, S. Koziel, and M. Czyz, “Time-Gating method with automatic calibration for accurate measurements of electrically small antenna radiation patterns in non-anechoic environments”, Measurement: Journal of the international measurement confederation, vol. 208, 2023. doi: https://doi.org/10.1016/j.measurement.2023.112477.
[45] L. Rasaporlu, R. Pranitha, M. Sinha, R. Farheen, J. Sreedevi, and K. Vasanth, “Design of a 7 Element Yagi Uda Antenna for tracking LoRA based Satellites operating at 433MHz”, Proceedings of the International Conference on Circuit Power and Computing Technologies, pp. 610–615, 2023. doi: https://doi.org/10.1109/ICCPCT58313.2023.10245024.
[46] E. Jebabli, M. Hayouni, and F. Choubani, “Impedance Matching Enhancement of A Microstrip Antenna Array Designed for Ka-band 5G Applications”, International Wireless Communications and Mobile Computing, pp. 1254–1258, 2021. doi: https://doi.org/10.1109/IWCMC51323.2021.9498825.
[47] M. Alibakhshikenari et al., “Impedance Bandwidth Improvement of a Planar Antenna Based on Metamaterial- Inspired T-Matching Network”, IEEE Access, vol. 9, pp. 67916–67927, 2021. doi: https://doi.org/10.1109/ACCESS.2021.3076975.
[48] L. Sun, “Low speed sensorless control method of brushless DC motor based on pulse high frequency voltage injection”, Alexandria Engineering Journal, vol. 61, no. 8, pp. 6457–6463, 2022. doi: https://doi.org/10.1016/j.aej.2021.12.005.
[49] I. Anshory et al., “Optimization DC-DC boost converter of BLDC motor drive by solar panel using PID and firefly algorithm”, Results in Engineering, vol. 21, 2024. doi: https://doi.org/10.1016/j.rineng.2023.101727.
[50] N. L. Manuel, N. İnanç, and M. Lüy, “Control and performance analyses of a DC motor using optimized PIDs and fuzzy logic controller”, Results in Control and Optimization, vol. 13, 2023. doi: https://doi.org/10.1016/j.rico.2023.100306.
[51] S. L. Ayinla et al., “Optimal control of DC motor using leader-based Harris Hawks optimization algorithm’,
Franklin Open, vol. 6, 2024. doi: https://doi.org/10.1016/j.fraope.2023.100058.
[52] P. Prasetyawan, S. Samsugi, A. Mulyanto, M. Iqbal, R. Prabowo, and Ardiansyah, “A prototype of IoT-based smart system to support motorcyclists safety”, Journal of Physics, 2021. doi: https://doi.org/10.1088/1742- 6596/1810/1/012005.
[53] S.R, Joshua, A.N. Yeon, S. Park, K. Kwon, “A Hybrid Machine Learning Approach: Analyzing Energy Potential and Designing Solar Fault Detection for an AIoT-Based Solar–Hydrogen System in a University Setting”, Applied Sciences (Switzerland), vol. 14, no. 18, 2024. doi: https://doi.org/ 10.3390/app14188573.
[54] T. Tao and L. Hua, “Decoupling control of bearingless brushless DC motor using particle swarm optimized neural network inverse system”, Measurement: Sensors, vol. 31, 2024. doi: https://doi.org/10.1016/j.measen.2023.100952.
[55] P. Gopi, S. Srinivasan, and M. Krishnamoorthy, “Disk margin based robust stability analysis of a DC motor drive”, Engineering Science and Technology, vol. 32, 2022. doi: https://doi.org/10.1016/j.jestch.2021.10.006.
[56] M. miao Cheng, X. wei Zhang, and P. hui Zhai, “Research on auxiliary resonant commutated pole inverter for driving brushless DC motor”, Energy Reports, vol. 8, pp. 1184–1191, 2022. doi: https://doi.org/10.1016/j.egyr.2022.08.196.
[57] Widi aribowo, L. Abualigah, D. Oliva, T. Mzili, A. Sabo, and H. A. Shehadeh, “Frilled Lizard Optimization to optimize parameters Proportional Integral Derivative of DC Motor”, Vokasi Unesa Bulletin of Engineering Technology and Applied. Science, vol. 1, no. 1, pp. 14–21, 2024. doi: https://doi.org/10.26740/vubeta.v1i1.33973
[58] W. Aribowo, B. Suprianto, R. Rahmadian, M. Widyartono, A. L. Wardani, and A. Prapanca, “Optimal tuning fractional order PID based on marine predator algorithm for DC motor”, International Journal of Power Electronics and Drive Systems, vol. 14, no. 2, pp. 762–770, 2023. doi: https://doi.org/10.11591/ijpeds.v14.i2.pp762-770.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Alfiyanto Wahyu Wicaksono, Akhmad Nawawi, Muhammad Erfin Prafitama Setiawan , Yoko Herwanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

