Efektivitas Asam Malat dalam Mengkelat Kadmium pada Tanaman Padi Aromatik Varietas Pulu Mandoti Emas

Penulis

  • Selis Meriem Universitas Islam Negeri Alauddin Makassar
  • Nur Armiah Aris Universitas Islam Negeri Alauddin Makassar
  • Fatmawati Nur Universitas Islam Negeri Alauddin Makassar

DOI:

https://doi.org/10.26740/lenterabio.v14n3.p408-414

Kata Kunci:

Asam organik, logam berat, padi tercekam Cd

Abstrak

Cemaran logam berat kadmium (Cd) pada daerah persawahan merupakan isu masalah global yang mengancam kesehatan pangan dan manusia. Oleh karena itu, mitigasi dampak negatif dari akumulasi Cd pada tanaman padi sebagai sumber pangan utama Indonesia perlu mendapat perhatian yang serius. Penelitian ini bertujuan untuk mengevaluasi pengaruh pemberian asam malat terhadap ketersediaan dan serapan Cd (di tanah, akar, dan tajuk), pertumbuhan morfologi, kandungan air relatif (KAR), dan struktur anatomi akar pada padi lokal aromatik varietas Pulu Mandoti Emas (PME). Penelitian ini menggunakan konsentrasi Cd (CdCl2) yang terdiri dari kontrol (C1) dan 10 mg/kg Cd (C2), serta konsentrasi asam malat (C4H6O5) yang terdiri dari kontrol (M1) dan 50 µM asam malat (C2). Hasil menunjukkan bahwa Cd hanya terdeteksi pada perlakuan C2M1 sebanyak 0.05 ppm di tanah dan 4.47 ppm di akar. Perlakuan C2M2 mampu mengeliminasi ketersediaan Cd baik di tanah, akar, dan tajuk serta menunjukkan nilai tertinggi pada parameter KAR (69%), panjang akar (13 cm), berat basah akar (4.74 g), dan berat kering tajuk (4.75 g) dibandingkan perlakuan lainnya. Secara anatomi, perlakuan C2M2 mampu menjaga integritas struktur jaringan akar tanaman padi PME sedangkan perlakuan C2M1 menyebabkan perubahan struktur anatomi akar pada jaringan korteks. Penggunaan asam malat direkomendasikan untuk menjaga kesuburan tanah, meningkatkan pertumbuhan, dan menjaga integritas anatomi akar dalam kondisi cekaman Cd.

Referensi

Anwen X, Danting C, Chin LW and Zhihong Y, 2021. Root Morphology and Anatomy Affect Cadmium Translocation and Accumulation in Rice. Rice Science, 28(6): 594–604.

Badan Standardisasi Nasional. 2009. Batas Maksimum Cemaran Logam Berat dalam Pangan. In Batas Maksimum Cemaran Logam Berat dalam Pangan. https://sertifikasibbia.com/upload/logam_berat.pdf

Charkiewicz AE, Omeljaniuk WJ, Nowak K, Garley M and Nikliński J, 2023. Cadmium Toxicity and Health Effects—A Brief Summary. Molecules, 28(18): 1–16.

Deng X, Chen B, Chen Y, Jiang L, Hu Y, Yang Y, Rong X, Peng L and Zeng Q, 2022. Flag Leaf Cell Wall Functional Groups and Components Play A Crucial Role in The Accumulation and Translocation of Cd in Rice Grain Via Foliage Application of Humic Acid. Ecotoxicology and Environmental Safety, 239: 113658.

Fan Y, Zhu T, Li M, He J and Huang R, 2017. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China. Journal of Healthcare Engineering, 2017: 1–9.

Guo H, Chen H, Hong C, Jiang D and Zheng B, 2017. Exogenous Malic Acid Alleviates Cadmium Toxicity in Miscanthus Sacchariflorus Through Enhancing Photosynthetic Capacity and Restraining ROS Accumulation. Ecotoxicology and Environmental Safety, 141: 119–128.

Hawrylak-Nowak B, Dresler S and Matraszek R, 2015. Exogenous Malic and Acetic Acids Reduce Cadmium Phytotoxicity and Enhance Cadmium Accumulation in Roots of Sunflower Plants. Plant Physiology and Biochemistry, 94: 225–234.

Huang L, Li WC, Tam NFY and Ye Z, 2019. Effects of Root Morphology and Anatomy on Cadmium Uptake and Translocation in Rice (Oryza sativa L.). Journal of Environmental Sciences, 75: 296–306.

Hussain B, Umer MJ, Li J, Ma Y, Abbas Y, Ashraf MN, Tahir N, Ullah A, Gogoi N and Farooq M, 2021. Strategies for Reducing Cadmium Accumulation in Rice Grains. Journal of Cleaner Production, 286: 125557.

Juen LL, Aris AZ, Ying LW and Haris H, 2014. Bioconcentration and Translocation Efficiency of Metals in Paddy (Oryza sativa): A Case Study from Alor Setar, Kedah, Malaysia. Sains Malaysiana, 43(4): 521–528.

Lan Z, He Q, Zhang M, Liu H, Fang L and Nie J, 2023. Assessing The Effects of Cadmium Stress on The Growth, Physiological Characteristics and Metabolic Profiling of Rice (Oryza sativa L.) Using HPLC-QTOF/MS. Chemosensors, 11(11): 558.

Li B, Quan-Wang C, Liu H, L, H-X, Yang J, Song W-P, Chen L and Zeng M, 2016. Effect of Cd2+ Ions on Root Anatomical Structure of Four Rice Genotypes. Journal of Environmental Biology, 37: 1265–1272.

Li Z, Liang Y, Hu H, Shaheen SM, Zhong H, Tack FMG, Wu M, Li YF, Gao Y, Rinklebe J and Zhao J, 2021. Speciation, Transportation and Pathways of Cadmium in Soil-Rice Systems: A Review on The Environmental Implications and Remediation Approaches for Food Safety. Environment International, 156: 106749.

Lu H, Qiao D, Han Y, Zhao Y, Bai F and Wang Y, 2021. Low Molecular Weight Organic Acids Increase Cd Accumulation in Sunflowers Through Increasing Cd Bioavailability and Reducing Cd Toxicity to Plants. Minerals, 11(3): 1–19.

Meriem S, 2023. Mitigasi Cekaman Kadmium (Cd) Pada Tanaman Padi (Oryza sativa L.): Pendekatan Fisiologi dan Molekuler. Berita Biologi, 22(1): 61–75.

Meriem S, Muliyah E, Angio MH and Triadiati T, 2021. The Physiological Responses of Zea mays L. and Cucumis sativus L. on Drought Stress and Re-Watering. Jurnal Biodjati, 6(2): 190–202.

Nurlaili RA, Rahayu YS and Dewi SK, 2021. Pengaruh Mikoriza Vesikular Arbuskular (MVA) dan Silika (Si) Terhadap Pertumbuhan Tanaman Brassica Juncea pada Tanah Tercemar Kadmium (Cd). LenteraBio: Berkala Ilmiah Biologi, 9(3): 185–193.

Payus C, Talip AFA and Hsiang TW, 2015. Heavy Metals Accumulation in Paddy Cultivation Area of Kompipinan, Papar District, Sabah. Journal of Sustainability Science and Management, 10(1): 76–86.

Rahim I, Harsani, Hakzah, Meriem S and Ahamed EHA, 2022. Organic Acids from Cocoa Pod Waste Inoculated by Basidiomycota Fungi to Enhance The Performance of Shallots. Agrivita, 44(3): 549–558.

Rebouillat J, Dievart A, Verdeil JL, Escoute J, Giese G, Breitler JC, Gantet P, Espeout S, Guiderdoni E and Périn C, 2009. Molecular Genetics of Rice Root Development. Rice, 2(1): 15–34.

Ronzan M, Piacentini D, Fattorini L, Della Rovere F, Eiche E, Riemann M, Altamura MM and Falasca G, 2018. Cadmium and Arsenic Affect Root Development in Oryza sativa L. Negatively Interacting With Auxin. Environmental and Experimental Botany, 151: 64–75.

Satpathy D, Reddy MV and Dhal SP, 2014. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants and Grains (Oryza sativa L.) at The East Coast of India. BioMed Research International, 2014: 1–11.

Sebastian A and Prasad MNV, 2018. Exogenous Citrate and Malate Alleviate Cadmium Stress in Oryza sativa L.: Probing Role of Cadmium Localization and Iron Nutrition. Ecotoxicology and Environmental Safety, 166: 215–222.

Seregin IV, Shpigun LK and Ivanov VB, 2004. Distribution and Toxic Effects of Cadmium and Lead on Maize Roots. Russian Journal of Plant Physiology, 51(4): 525–533.

Shao Y, Xu X, Wang L, Han J, Katuwal HB, Jiao S and Qiu G, 2023. Human Dietary Exposure To Heavy Metals Via Rice in Nepal. International Journal of Environmental Research and Public Health, 20(5): 4134.

Sutrisno and Kuntyastuti H, 2015. Pengelolaan Cemaran Kadmium pada Lahan Pertanian di Indonesia. Buletin Palawija, 13(1): 83–91.

Uraguchi S and Fujiwara T, 2012. Cadmium Transport and Tolerance in Rice: Perspectives for Reducing Grain Cadmium Accumulation. Rice, 5(1): 1–8.

Vega A, Delgado N and Handford M, 2022. Increasing Heavy Metal Tolerance by The Exogenous Application of Organic Acids. International Journal of Molecular Sciences, 23(10): 5438.

Zakaria Z, Zulkafflee NS, Redzuan NAM, Selamat J, Ismail MR, Praveena SM, Tóth G and Abdull Razis AF, 2021. Understanding Potential Heavy Metal Contamination, Absorption, Translocation and Accumulation in Rice And Human Health Risks. Plants, 10(6): 1070.

Zeng H, Chen L, Yang Y, Deng X, Zhou X and Zeng Q, 2019. Basal and Foliar Treatment Using An Organic Fertilizer Amendment Lowers Cadmium Availability in Soil and Cadmium Uptake by Rice on Field Micro-Plot Experiment Planted in Contaminated Acidic Paddy Soil. Soil and Sediment Contamination: An International Journal, 28(1): 1–14.

Zhang S, Chen H, He D, He X, Yan Y, Wu K and Wei H, 2020. Effects of Exogenous Organic Acids on Cd Tolerance Mechanism of Salix variegata Franch. Under Cd Stress. Frontiers in Plant Science, 11: 1–13.

Zhang X, Wang H, Xue W, Wang C, Zhang C, Huang Y and Liu Z, 2023. Effects of Malate-Aspartic Acid Metabolism on Cadmium Uptake and Transport in Rice. Journal of Agro-Environment Science, 42(10): 2147–2154.

Diterbitkan

2025-11-15

Cara Mengutip

Meriem, S., Aris, N. A., & Nur, F. (2025). Efektivitas Asam Malat dalam Mengkelat Kadmium pada Tanaman Padi Aromatik Varietas Pulu Mandoti Emas. LenteraBio : Berkala Ilmiah Biologi, 14(3), 408–414. https://doi.org/10.26740/lenterabio.v14n3.p408-414
Abstract views: 0 , PDF Downloads: 0

Artikel Serupa

> >> 

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.