Analysis of Concepts and Propositions through Multi-Representation Based Inquiry Learning on Colligative Properties

Authors

  • Herunata Herunata Faculty of Mathematics and Natural Science, State University of Malang
  • Putri Nanda Fauziah Faculty of Mathematics and Natural Science, State University of Malang
  • Fisky Ayudya Citra Pramudita Faculty of Mathematics and Natural Science, State University of Malang
  • Shella Natasya Faculty of Mathematics and Natural Science, State University of Malang

DOI:

https://doi.org/10.26740/jcer.v8n1.p41-53

Keywords:

multi-representation, colligative properties, scientific approach, concept analysis, proposition

Abstract

Chemistry is a science that studies the composition, structure, and properties or changes of matter. In chemistry, there are three levels of representation namely macroscopic, submicroscopic, and symbolic. Chemistry is a branch of science that requires students to have an understanding of concepts and mathematical skills, one of which is colligative properties. The aim of this research is to analyze the concept of colligative properties so that students don’t have misconceptions and can enhance their understanding through a multi-representation approach. The method used is the scientific approach, based on a series of five main learning experiences: Observing, Questioning, Reasoning, Associating and Communicating. Information collection techniques include concept maps, concept analysis, and propositions. Colligative properties consist of vapor pressure lowering, boiling point elevation, freezing point depression, and osmotic pressure. The van't Hoff factor is present in most colligative properties where the solute is an electrolyte substance.

References

Ardanareswari, Annisaningtyas. 2014. Implementasi Strategi Pembelajaran Intertekstual Pada Submateri Pokok Kenaikan Titik Didih Larutan Sma Kelas XII. Skripsi. Bandung: Universitas Pendidikan Indonesia.

Wulandari, Cahya., Susilaningsih, & Endang., Kasmui. 2018. Estimasi Validitas dan Respon Siswa terhadap Bahan Ajar Multirepresentasi: Definitif, Makroskopis, Mikroskopis, Simbolik pada Materi Asam Basa. Jurnal Phenomenon, 08(2): 165-174.

Nadi, C. Y., Es, W. A., & Siaputro, S. 2016. Pengaruh Metode Problem Solving Secara Algoritmik Kelarutan dan Hasil Kali Kelarutan Kelas XI MIA di SMAN 5 Surakarta. Jurnal Pendidikan Kimia, 5(1): 46-54.

Ariyaldi., Putri, Asmawati Tri., Khalisah, Andi Nur., & Nurhikma. 2017. Pengaruh Penggunaan Strategi Dynamic Problem Solving Berbasis Conceptual Scaffolding untuk Meningkatkan Hasil Belajar dan Aktivitas Belajar Peserta Didik pada Materi Sifat Koligatif Larutan. Jurnal Nalar Pendidikan, 5(2): 158-164.

Akbar, S., A. 2016. Profil Kemampuan Analisis Respon Siswa Sekolah Menengah Atas Melalui Hypothetical Learning Trajectory (HLT) pada Materi Sifat Koligatif Larutan. Serambi Akademica, 4(2): 85-90.

Purwanto, Kriesna Kharisma., Fatayah. 2019. Identifikasi Motivasi dan Kepuasan Belajar Siswa dalam Pembelajaran Kimia Menggunakan Macromedia Flash. Makalah disajikan dalam Prosiding Seminar Nasional Kimia dan Pembelajarannya (SNKP) 2019, Jurusan Kimia FMIPA UM, Malang, 3 November.

Sukmawati, Wati. 2019. Analisis Level Makroskopis, Mikroskopis dan Simbolik Mahasiswa dalam Memahami Elektrokimia. Jurnal Inovasi Pendidikan IPA, 5(2): 195-204.

Kepala Badan Standar, Kurikulum, dan Asesmen Pendidikan Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. 2022. Perubahan atas Keputusan Kepala Badan Standar, Kurikulum, dan Asesmen Pendidikan Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Nomor 008/H/KR/2022 Tentang Capaian Pembelajaran pada Pendidikan Anak Usia Dini, Jenjang Pendidikan Dasar, dan Jenjang Menengah pada Kurikulum Merdeka. https://litbang.kemdikbud.go.id

Suhandi, A. & F. C. Wibowo. 2012. Pendekatan Multirepresentasi dalam Pembelajaran Usaha-Energi dan Dampak Terhadap Pemahaman Konsep Mahasiswa. Jurnal Pendidikan Fisika Indonesia, 8: 1-7.

Nuangchalerm, P. 2017. Relationship Between Preferred and Actual Opinions about Inquiry-based Instruction Classroom. European Journal of Science and Mathematics Education, 5(1): 67-73.

Pratikno, P., Suyono, S., & Agustini, R. 2020. The Validity of Student Worksheets and Student Textbooks Inquiry Training Model on The Colligative Properties of Solution. International Journal for Educational and Vocational Studies, 2(11), Art. 11. https://doi.org/10.29103/ijevs.v2i11.3006

Lee, V. S. 2012. What is inquiry-guided learning? New Directions for Teaching and Learning. United States: Wiley Periodicals Inc.

Council, N. R., Education, D. of B. and S. S. and, Education, B. on S., & Standards, C. on a C. F. for N. K.-12 S. E. 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. National Academies Press.

Pedaste, M. 2015. Phases of inquiry-based learning: Definitions and the inquiry cycle. Elsevier Enhanced Reader. https://doi.org/10.1016/j.edurev.2015.02.003

Daryanto. 2014. Pendekatan Pembelajaran Saintifik Kurikulum 2013. Yogyakarta: Penerbit Gava Media.

Brown, T. L., LeMay, H. E., Bursten, B. E., Murphy, C. J., Woodward, P. M., & Stoltzfus, M. W. 2011. Chemistry: The Central Science (12th ed.). Pearson Education Inc. New Jersey.

Chang, R. 2010. Chemistry (10th ed.). New York, NY: McGraw-Hill Higher Education.

McGraw-HillMcMurry, J., Fay, Jordan. 2012. Chemistry, (6th ed). Pearson Education Inc. New Jersey.

Zumdahl, S. S., Zumdahl, S. L. 2010. Chemistry (eighth edition). United States of America: Cengage Learning.

Tro, Nivaldo. J. 2010. Principles Of Chemistry A Molecular Approach. Pearson Education Inc. New Jersey.

PT. Ramesia Mesin Indonesia. 2023. Ramesia Your Partner to Grow. Diakses di https://ramesia.com/

Syukri.2007. Kimia Dasar 2. Penerbit ITB: Bandung.

Downloads

Published

2024-06-14
Abstract views: 520 , PDF Downloads: 929