Modified FATA Morgana Algorithm Based on Levy Flight
DOI:
https://doi.org/10.26740/vubeta.v2i1.37066Keywords:
FATA morgana algorithm, Metaheuristic, Levy Flight, Novel Algorithm, Artificial AlgorithmAbstract
Metaheuristics is an algorithmic approach used to solve complex optimization problems that are difficult to solve with conventional methods. The wide application of metaheuristics shows the flexibility and effectiveness of this method in solving various optimization problems in various fields. With the continuous development of technology and the need for more efficient solutions, the use of metaheuristics is expected to increase in the future. A novel group intelligence technique, called the modified mirage algorithm (FATA), is introduced to tackle continuous multi-type optimization problems. FATA formulates the mirage light filtering principle (MLF) and light propagation strategy (LPS) by replicating the mechanism of mirage formation. The MLF approach, together with the final integration concept, improves the algorithmic population's exploration capacity within FATA.This study presents the application of the levy flight method to the fata morgana algorithm. Validation in this study between the proposed method and the original fata morgana algorithm. From the simulation results, it is found that the proposed method has better performance on unimodal and multimodal functions.
References
[1] L. Messeri and M. J. Crockett, “Artificial intelligence and illusions of understanding in scientific research”, Nature, vol. 627, no. 8002, pp. 49–58, 2024. doi: https://doi.org/10.1038/s41586-024-07146-0
[2] V. Bolón-Canedo, L. Morán-Fernández, B. Cancela, and A. Alonso-Betanzos, “A review of green artificial intelligence: Towards a more sustainable future”, Neurocomputing, p. 128096, 2024. doi: https://doi.org/10.1016/j.neucom.2024.128096
[3] Y. I. Alzoubi and A. Mishra, “Green artificial intelligence initiatives: Potentials and challenges”, Journal of Cleaner Production, p. 143090, 2024. doi: https://doi.org/10.1016/j.jclepro.2024.143090
[4] O. A. Bello and K. Olufemi, “Artificial intelligence in fraud prevention: Exploring techniques and applications challenges and opportunities”, Computer Science and IT Research Journal, vol. 5, no. 6, pp. 1505–1520, 2024. doi: http://doi.org/10.51594/csitrj.v5i6.1252 .
[5] M. A. Fadhel et al., “Navigating the metaverse: unraveling the impact of artificial intelligence—a comprehensive review and gap analysis”, Artificial Intelligent Review, vol. 57, no. 10, p. 264, 2024. doi: https://doi.org/10.1007/s10462-024-10881-5
[6] P. Sharma and S. Raju, “Metaheuristic optimization algorithms: A comprehensive overview and classification of benchmark test functions”, Soft Computing, vol. 28, no. 4, pp. 3123–3186, 2024. doi : https://doi.org/10.1007/s00500-023-09276-5
[7] G. H. Valencia-Rivera et al., “A systematic review of metaheuristic algorithms in electric power systems optimization”, Applied Soft Computing, vol. 150, p. 111047, 2024. doi : https://doi.org/10.1016/j.asoc.2023.111047
[8] G. Li, T. Zhang, C.-Y. Tsai, L. Yao, Y. Lu, and J. Tang, “Review of the metaheuristic algorithms in applications: Visual analysis based on bibliometrics (1994–2023)”, Expert Systems and Applications, p. 124857, 2024. doi: https://doi.org/10.1016/j.eswa.2024.124857
[9] R. Narayanan and N. Ganesh, “A Comprehensive Review of Metaheuristics for Hyperparameter Optimization in Machine Learning”, Metaheuristics Machine Learning Algorithms Applications, pp. 37–72, 2024. doi: https://doi.org/10.1002/9781394233953.ch2
[10] V. Tomar, M. Bansal, and P. Singh, “Metaheuristic Algorithms for Optimization: A Brief Review”, Engineering Proceedings, vol. 59, no. 1, p. 238, 2024. doi: https://doi.org/10.3390/engproc2023059238
[11] K. Rajwar and K. Deep, “Structural bias in metaheuristic algorithms: Insights, open problems, and future prospects”, Swarm Evolution Computing, vol. 92, p. 101812, 2025. doi: https://doi.org/10.1016/j.swevo.2024.101812
[12] A. Lameesa, M. Hoque, M. S. Bin Alam, S. F. Ahmed, and A. H. Gandomi, “Role of metaheuristic algorithms in healthcare: a comprehensive investigation across clinical diagnosis, medical imaging, operations management, and public health”, Journal of Computational Design and Engineering, vol. 11, no. 3, pp. 223–247, 2024. doi: https://doi.org/10.1093/jcde/qwae046
[13] S. S. Aljehani and Y. A. Alotaibi, “Preserving Privacy in Association Rule Mining Using Metaheuristic-Based Algorithms: A Systematic Literature Review”, IEEE Access, 2024. doi: https://doi.org/10.1109/ACCESS.2024.3362907
[14] P. Megantoro, S. Abd Halim, N. A. M. Kamari, L. J. Awalin, M. S. Ali, and H. M. Rosli, “Optimizing reactive power dispatch with metaheuristic algorithms: A review of renewable distributed generation integration with intermittency considerations”, Energy Reports, vol. 13, pp. 397–423, 2025. doi: https://doi.org/10.1016/j.egyr.2024.12.020
[15] A. Yernar and C. Turan, “Recent developments in vehicle routing problem under time uncertainty: a comprehensive review”, Bulletin of Electrical Engineering and Informatics, vol. 14, no. 2, pp. 1263–1275, 2025. doi: https://doi.org/10.11591/eei.v14i2.8636
[16] A. Saini and O. P. Rahi, “Optimal power flow approaches for a hybrid system using metaheuristic techniques: a comprehensive review”, International Journal of Ambient Energy, vol. 45, no. 1, p. 2345839, 2024. doi: https://doi.org/10.1080/01430750.2024.2345839.
[17] S. Mohapatra, H. Lala, and P. Mohapatra, “Modified random-oppositional chaotic artificial rabbit optimization algorithm for solving structural problems and optimal sizing of hybrid renewable energy system”, Evolutionary Intelligence, vol. 18, no. 1, p. 21, 2025. doi: https://doi.org/10.1007/s12065-024-01004-8.
[18] E. Crespo-Martínez, L. Tonon-Ordóñez, M. Orellana, and J. F. Lima, “Applied Metaheuristics in International Trading: A Systematic Review”, Conference on Information and Communication Technologies of Ecuador, pp. 95–112, 2023. doi: https://doi.org/10.1007/978-3-031-45438-7_7.
[19] D. Fatima, A.B Manar, N. Qassir, and S. Tracy, “Artificial intelligence techniques in financial trading: A systematic literature review”, Journal of King Saud University - Computer and Information Sciences, vol. 36, no. 3, 2024. doi: https://doi.org/10.1016/j.jksuci.2024.102015.
[20] W. F. Mahmudy, A. W. Widodo, and A. H. Haikal, “Challenges and Opportunities for Applying Meta-Heuristic Methods in Vehicle Routing Problems: A Review”, Engineering Proceedings, vol. 63, no. 1, p. 12, 2024. doi: https://doi.org/10.3390/engproc2024063012.
[21] L. Dong‐liang, L. Bei, and W. Hai‐hua, “The importance of nature‐inspired metaheuristic algorithms in the data routing and path finding problem in the internet of things”, International Journal of Communication Systems, vol. 36, no. 10, p. e5450, 2023. doi: https://doi.org/10.1002/dac.5450.
[22] S. Faramarzi-Oghani, P. Dolati Neghabadi, E.-G. Talbi, and R. Tavakkoli-Moghaddam, “Meta-heuristics for sustainable supply chain management: A review”, International Journal of Production Research, vol. 61, no. 6, pp. 1979–2009, 2023. doi: https://doi.org/10.1080/00207543.2022.2045377
[23] K. Joni, “Parameter Estimation of Photovoltaic based on Chaotic Elite Mountain Gazelle Optimizer”, Vokasi Unesa Bulletin of Engineering Technology and Applied Science, pp. 30–37, 2024. doi: https://doi.org/10.26740/vubeta.v1i1.34073
[24] S. Jomah, “Meta-Heuristic Scheduling: A Review on Swarm Intelligence and Hybrid Meta-Heuristics Algorithms for Cloud Computing”, Operations Research Forum, vol. 5, no. 4, p. 94, 2024. doi: https://doi.org/10.1007/s43069-024-00382-0
[25] A. Seyyedabbasi, W. Z. Tareq Tareq, and N. Bacanin, “An Effective Hybrid Metaheuristic Algorithm for Solving Global Optimization Algorithms”, Multimedia Tools and Applications, pp. 1–36, 2024. doi: https://doi.org/10.1007/s11042-024-19437-9
[26] H. Alqahtani and G. Kumar, “Efficient Routing Strategies for Electric and Flying Vehicles: A Comprehensive Hybrid Metaheuristic Review”, IEEE Transactions on Intelligent Vehicles, 2024. doi: https://doi.org/10.1109/TIV.2024.3358872
[27] S. Mahmoudinazlou, A. Alizadeh, J. Noble, and S. Eslamdoust, “An improved hybrid ICA-SA metaheuristic for order acceptance and scheduling with time windows and sequence-dependent setup times”, Neural Computing and. Applications, vol. 36, no. 2, pp. 599–617, 2024. doi: https://doi.org/10.1007/s00521-023-09030-w
[28] R. Martí, M. Sevaux, and K. Sörensen, “Fifty years of metaheuristics”, European Journal of Operational Research, vol. 321, no. 2, pp. 345–362, 2025. doi: https://doi.org/10.1016/J.EJOR.2024.04.004
[29] M. A. L. Silva, J. F. da Silva, S. R. de Souza, and M. J. F. Souza, “A scalability analysis of a Multi-agent framework for solving combinatorial optimization via Metaheuristics”, Engineering Applications of Artificial Intelligence, vol. 142, p. 109738, 2025. doi: https://doi.org/10.1016/j.engappai.2024.109738
[30] A. Dvivedi and P. Kumar, “Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning”, Measurement, vol. 243, p. 116323, 2025. doi: https://doi.org/10.1016/j.measurement.2024.116323
[31] Y. Ahmed et al., “Advanced ciprofloxacin quantification: A machine learning and metaheuristic approach using ultrasensitive chitosan-gold nanoparticle based electrochemical sensor”, Journal of Environmental and Chemical Engineering, vol. 13, no. 1, p. 115094, 2025. doi: https://doi.org/10.1016/j.jece.2024.115094
[32] M. Sadrani, A. Tirachini, and C. Antoniou, “Bus scheduling with heterogeneous fleets: Formulation and hybrid metaheuristic algorithms”, Expert Systems Applications, vol. 263, p. 125720, 2025. doi: https://doi.org/10.1016/j.eswa.2024.125720
[33] N. Van Thieu, E. H. Houssein, D. Oliva, and N. D. Hung, “IntelELM: A python framework for intelligent metaheuristic-based extreme learning machine”, Neurocomputing, vol. 618, p. 129062, 2025. doi: https://doi.org/10.1016/j.neucom.2024.129062
[34] T. Wu, C. Miao, Y. Zhang, and C. Chen, “A RankNet-Inspired Surrogate-Assisted Hybrid Metaheuristic for Expensive Coverage Optimization”, arXiv Prepraration arXiv2501.07375, 2025. doi: https://doi.org/10.48550/arXiv.2501.07375
[35] T. U. Badrudeen, F. K. Ariyo, and N. Nwulu, “Optimal Sizing of FACTS Controller through Hybrid Metaheuristic Algorithm for Static Security Enhancement in Transmission Power Systems”, Scientific African, p. e02543, 2025. doi: https://doi.org/10.1016/j.sciaf.2025.e02543
[36] P. Samui, “Hybrid Metaheuristic Optimization of Artificial Neural Networks for Liquefaction Probability Prediction Using Various Historical CPT Data”, Transportation Infrastructure Geotechnology, vol. 12, no. 1, pp. 1–33, 2025. doi: https://doi.org/10.1007/s40515-024-00504-5.
[37] J. Zhao, Y. Long, B. Xie, G. Xu, Y. Liu, “Optimizing quay crane scheduling using deep reinforcement learning with hybrid metaheuristic algorithm”, Engineering Applications of Artificial Intelligence, vol. 143, 2025. doi: https://doi.org/10.1016/j.engappai.2025.110021.
[38] L. Zhao, Z. Peng, P. Pirozmand, “A Hybrid Metaheuristic Method To Optimize The Total Weighted Tardiness And Delivery Cost For An Integrated Production And Distribution Scheduling Model In Supply Chain Management”, Journal of Industrial and Management Optimization, vol. 21, no.3, pp. 2396-2415, 2025. doi: https://doi.org/10.3934/jimo.2024176.
[39] N.Van Thieu, S.H. Houssein, D. Oliva, N.D. Hung,” IntelELM: A python framework for intelligent metaheuristic-based extreme learning machine”, Neurocomputing, vol. 618, 2025. doi: https://doi.org/10.1016/j.neucom.2024.129062.
[40] A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, “Metaheuristics should be Tested on Large Benchmark Set with Various Numbers of Function Evaluations,” Swarm and Evolutionary Computation, vol. 92, p. 101807, 2025. doi : https://doi.org/10.1016/j.swevo.2024.101807.
[41] B. G. Thengvall, S. N. Hall, and M. P. Deskevich, “Measuring the Effectiveness and Efficiency of Simulation Optimization Metaheuristic Algorithms,” Journal of Heuristics, vol. 31, no. 1, pp. 1–21, 2025. doi: https://doi.org/10.1016/j.swevo.2024.101807.
[42] C. Zheng, Z. Li, M. Janardhanan, Z. Zhang, and L. Zhang, “Improved Swarm-Based Metaheuristics for Optimizing Human–Robot Collaborative Assembly Lines with Multi-Type Collaborative Robots,” Flexible Services and Manufacturing Journal, pp. 1–63, 2025. doi : https://doi.org/10.1007/s10696-024-09582-6
[43] B. S. Domingues, M. A. C. Rodrigues, and É. C. Alves, “Optimum Design Of Truss Structures Considering Nonlinear Analysis And Dynamic Loading Using Metaheuristic Algorithms,” REM-International Engineering Journal, vol. 78, no. 1, p. e240008, 2025. doi : https://doi.org/10.1590/0370-44672024780008
[44] S. Dhibar and M. Jain, “Metaheuristics and Strategic Behavior of Markovian Retrial Queue Under Breakdown, Vacation and Bernoulli Feedback,” Applied Intelligence, vol. 55, no. 4, p. 273, 2025. doi : https://doi.org/10.1007/s10489-024-05978-x.
[45] A. Qi, D. Zhao, A. A. Heidari, L. Liu, Y. Chen, and H. Chen, “FATA: an efficient optimization method based on geophysics”, Neurocomputing, vol. 607, p. 128289, 2024. doi: https://doi.org/10.1016/j.neucom.2024.128289
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aditya Prapanca

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

