Leaf and Stomata Morphometrics of Gayam Inocarpus fagifer (Fabaceae) at Different Altitudes


  • Alwi Smith Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Pattimura, Jln. Ir. M. Putuhena, Poka Campus, Ambon City, Maluku
  • Kristin Sangur Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Pattimura, Jln. Ir. M. Putuhena, Poka Campus, Ambon City, Maluku https://orcid.org/0000-0003-4576-6328
  • Dessy Fitri Molle Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Pattimura, Jln. Ir. M. Putuhena, Poka Campus, Ambon City, Maluku
  • Ludia Haurissa Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Pattimura, Jln. Ir. M. Putuhena, Poka Campus, Ambon City, Maluku
  • Grisendy Maulany Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Pattimura, Jln. Ir. M. Putuhena, Poka Campus, Ambon City, Maluku
  • Belsefren Renyaan Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Pattimura, Jln. Ir. M. Putuhena, Poka Campus, Ambon City, Maluku




Gayam (Inocarpus fagifer) is one of the members of the angiosperm flora in Ambon City, Indonesia, that grows and develops at various altitudes. This research aimed to analyze the leaf and stomata morphometrics of these plants in the Aer Louw and Ema Village areas. Leaf samples were taken from the upper, middle, and lower strata and considered as replicates. The morphometric characteristics were measured manually using millimeter block paper and the formula for calculating leaf ratio. Furthermore, the stomata were stained using the direct incision method and safranin. The incision results were analyzed using an Olympus CX23 microscope at 400x magnification. The measurement and observation were analyzed descriptively and correlatively. The results showed that the average leaf width and length, also the midrib length were greater in Aer Louw Village than in Ema Village; while the leaf tip and stalk length were greater in Ema Village than in Aer Louw Village. The characteristics of stomata length and width in Ema Village were greater than in Aer Louw Village; otherwise, the number, index, and density of stomata in Aer Louw Village were greater than in Ema Village. Meanwhile, the correlational analysis showed that the environment influenced the variations of leaves and stomata. Therefore, the variations of leaves and stomata in the areas could predict plant adaptations to different environments.


Ahmad, K., Khan, M. A., Ahmad, M., Zafar, M., Arshad, M., & Ahmad, F. (2009). Taxonomic diversity of stomata in dicot flora of a district tank (N.W.F.P) in Pakistan. African Journal of Biotechnology, 8(6), 1052–1055.

Ahmad, K. S., Wazarat, A., Mehmood, A., Ahmad, M. S. A., Tahir, M. M., Nawaz, F., Ahmed, H., Zafar, M., Ulfat, A., Ahmad, K. S., Wazarat, A., Mehmood, A., Ahmad, M. S. A., Tahir, M. M., Nawaz, F., Ahmed, H., Zafar, M., & Ulfat, A. (2020). Adaptations in Imperata cylindrica (L.) Raeusch. and Cenchrus ciliaris L. for altitude tolerance. Biologia, 75(2), 183–198. https://doi.org/10.2478/s11756-019-00380-2

Akbarinia, M., Zarafshar, M., Sattarian, A., Fariba, B. S., Ehsan, G., & Iman, C. P. (2011). Morphological variations in stomata epidermal cells and trichome of sweet chestnut (Castanea sativa Mill.) in Caspian ecosystem. Taxonomy and Biosystematics, 3(7), 23–32.https://dorl.net/dor/20.1001.1.20088906.1390.

Alonso-Amelot, M. E. (2008). High altitude plants chemistry of acclimation and adaptation. Studies in Natural Products Chemistry, 34, 883–982. https://doi.org/10.1016/S1572-5995(08)80036-1.

Aslantaş, R., & Karakurt, H. (2009). The effects of altitude on stomata number and some vegetative growth parameters of some apple cultivars. Research Journal of Agriculture and Biological Sciences, 5(5), 853–857.

Casson, S., & Gray, J. E. (2008). Influence of environmental factors on stomatal development. New Phytologist, 178(1), 9–23. https://doi.org/10.1111/j.1469-8137.2007.02351.x

Chawla, S., Sachdeva, M., & Behal, S. (2016). Discrimination of DDoS attacks and flash events using Pearson’s product moment correlation method. International Journal of Computer Science and Information Security, 14(10), 382.

Driesen, E., Van den Ende, W., De Proft, M., & Saeys, W. (2020). Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy, 10(12), 1975–1988. https://doi.org/10.3390/agronomy10121975.

Elhaddad, N. S., Hunt, L., Sloan, J., & Gray, J. E. (2014). Light-induced stomatal opening is affected by the guard cell protein kinase APK1b. PLoS One, 9(5), e97161.https://doi.org/10.1371/journal.pone.0097161

Fetter, K. C., Eberhardt, S., Barclay, R. S., Wing, S., & Keller, S. R. (2019). Stomata counter: A neural network for automatic stomata identification and counting. New Phytologist, 223(3), 1671–1681. https://doi.org/10.1111/nph.15892.

Fritz, M. A., Rosa, S., & Sicard, A. (2018). Mechanisms underlying the environmentally induced plasticity of leaf morphology. Frontiers in Genetics, 9, 478. https://doi.org/10.3389/fgene.2018.00478.

Fustier, M. A., Martínez-Ainsworth, N. E Aguirre-Liguori, J. A., Venon, A., Corti, H., Rousselet, A., Dumas, F., Dittberner, H., Camarena, M. G., Grimaneli, D., Ovaskainen, O., Falque, M., Moreau, L., de Meaux, J., Montes-Hernández, S., Eguiarte, L. E., Vigouroux, Y., Manicacci, D., & Tenaillon, M. I. (2019). Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude. PLoS Genetics, 15(12), e1008512. https://doi.org/10.1371/journal.pgen.1008512

Gao, J., Song, Z., & Liu, Y. (2019). Response mechanisms of leaf nutrients of endangered plant (Acer catalpifolium) to environmental factors varied at different growth stages. Global Ecology and Conservation, 17, e00521. https://doi.org/10.1016/j.gecco.2019.e00521

Halbritter, A. H., Fior, S., Keller, I., Billeter, R., Edwards, P. J Holderegger, R Karrenberh, S., Pluess, A. R., Alexander, J. M., Halbritter, A. H., Fior, S., Keller, I., Billeter, R., Edwards, P. J Holderegger, R Karrenberh, S., Pluess, A. R., & M, A. J. (2018). Trait differentiation and adaptation of plants along elevation gradients. Journal of Evolutionary Biology, 31(6), 784–800. https://doi.org/10.17605/OSF.IO/YFJ9M.

Hamidah, S., Y, A. F., & Fitriani A. (2018). Micro climate assessment of medicinal plant habitat for the first step of domestication. Academic Research International, 9(3), 145–150.

Harrison, E. L., Cubas, L. A., Gray, J. E., & Hepworth, C. (2020). The influence of stomatal morphology and distribution on photosynthetic gas exchange. The Plant Journal, 101(4), 768–779. https://doi.org/10.1111/tpj.14560

Haworth, M., Marino, G., Materassi, A., Raschi, A., Scutt, C. P., & Centritto, M. (2022). The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO2] and role in plant physiological behaviour. Science of The Total Environment, 863, 160908. http://dx.doi.org/10.1016/j.scitotenv.2022.160908.

He, J., & Liang, Y-K. (2018). Stomata. Plant Science. https://doi.org/10.1002/9780470015902.a0026526.

Hong, T., Lin, H., & He, D. (2018). Characteristics and correlations of leaf stomata in different Aleurites montana provenances. PLoS One, 13(12), e0208899. https://doi.org/10.1371/journal.pone.0208899

Hovenden, M. J., & Schoor, J. K. V. (2006). The response of leaf morphology to irradiance depends on altitude of origin in Nothofagus cunninghamii. New Phytologist, 169(2), 291–297. https://doi.org/10.1111/j.1469-8137.2005.01585.x

Idris, A., Linatoc, A. C., & Bakar, M. F. B. A. (2019). Effect of light intensity on the photosynthesis and stomatal density of selected plant species of gunung ledang Johor. Malaysian Applied Biology, 48(3), 133–140.

Kofidis, G., & Bosabalidis, A. M. (2008). Effects of altitude and season on glandular hairs and leaf structural traits of Nepeta nuda L. Botanical Studies, 49(4), 363–372.

Kumari, K., & Yadav, S. (2018). Linear regression analysis study. Journal of the practice of Cardiovascular Sciences, 4(1), 33.

Lamprecht, A., Semenchuk, P. R., Steinbauer, K., Winkler, M., & Pauli, H. (2018). Climate change leads to accelerated transformation of high‐elevation vegetation in the central Alps. New Phytologist, 220(2), 447–459. https://doi.org/10.1111/nph.15290

Lawson, T., & Blatt, M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 164(4), 1556–1570. https://doi.org/10.1104/pp.114.237107

Li, C., Zhang, X., Liu, X., Luukkanen, O., & Berninger, F. (2006). Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 40(1), 5–9. https://doi.org/10.14214/sf.348.

Li, Q., Hou, J., He, N., Xu, L., & Zhang, Z. (2021). Changes in leaf stomatal traits of different aged temperate forest stands. Journal of Forestry Research, 32(3), 927–936. https://doi.org/10.1007/s11676-020-01135-5

Li, X., Li, Y., Zhang, Z., & Li, X. (2015). Influences of environmental factors on leaf morphology of Chinese jujubes. PLoS One, 10(5), e0127825. https://doi.org/10.1371/journal.pone.0127825

Liu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution, 10(15), 8166–8175. https://doi.org/10.1002/ece3.6519.

Madeline, R. C. M., Jordan, G. J., & Brodribb, T. J. (2014). Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant, Cell & Environment, 37(1), 124–131. https://doi.org/10.1111/pce.12136

Montesinos‐Navarro, A., Wig, J., Pico, F. X., & Tonsor, S. J. (2011). Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytologist, 189(1), 282–294. https://doi.org/10.1111/j.1469-8137.2010.03479.x.

Muradoglu, F., & Gundogdu, M. (2011). Stomata size and frequency in some walnut (Juglans regia) cultivars. International Journal of Agriculture and Biology, 13(6), 1011–1015.

Paembonan, S. A., Larekeng, S. H., & Millang, S. (2021). The dynamics of physiological properties of ebony (Diospyros celebica Bakh.) based on crown position and altitude. Earth and Environmental Science, 807. https://doi.org/10.1088/1755-1315/807/3/032016

Paridari, I. C., Jalali, S. G., Sonboli, A., Zarafshar, M., & Bruschi, P. (2013). Leaf macro-and micro-morphological altitudinal variability of Carpinus betulus in the Hyrcanian forest (Iran). Journal of Forestry Research, 24(2), 301–307. https://doi.org/10.1007/s11676-013-0353-x.

Pauku. R. L. (2006). Inocarpus fagifer (Tahitian chestnut). Growth, 5(14), 1–9.

Pauku, R. L., Lowe, A. J., & Leakey, R. R. (2010). Domestication of indigenous fruit and nut trees for agroforestry in the Solomon Islands. Forests, Trees and Livelihoods, 19(3), 269–287. https://doi.org/10.1080/14728028.2010.9752671

Peterson, K. M., Shyu, C., Burr, C. A., Horst, R. J., Kanaoka, M. M., Omae, M., Sato, Y., & Tori, K. U. (2013). Arabidopsis homeodomain-leucine zipper IV proteins promote stomatal development and ectopically induce stomata beyond the epidermis. Development, 140(9), 1924–1935. https://doi.org/10.1242/dev.090209.

Prabhakar, M. (2004). Structure, delimitation, nomenclature and classification of stomata. Acta Botanica Sinica, 46(2), 242–252.

Qi, X., & Torii, K. U. (2018). Hormonal and environmental signals guiding stomatal development. BMC Biology, 16(1), 1–11. https://doi.org/10.1186/s12915-018-0488-5.

Qiang, W. Y., Wang, X. L., Chen, T., Feng, H. Y., An, L. Z., He, Y. Q., & Wang, G. (2003). Variations of stomatal density and carbon isotope values of Picea crassifolia at different altitudes in the Qilian Mountains. Trees, 17(3), 258–262. https://doi.org/10.1007/s00468-002-0235-x.

Richardson, F., Brodribb, T. J., & Jordan, G. J. (2017). Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiology, 37, 869–878. https://doi.org/10.1093/treephys/tpx073

Ruszala, E. M., Beerling, D. J., Franks, P. J., Chater, C., Casson, S. A., Gray, J. E., & Hetherington, A. M. (2011). Land plants acquired active stomatal control early in their evolutionary history. Current Biology, 21, 1030–1035. https://doi.org/10.1016/j.cub.2011.04.044

Serdar, U., & Kurt, N. (2011). Some leaf characteristics are better morphometric discriminators for chestnut genotypes. Journal of Agricultural Science And Technology, 13, 885–894.

Setyowati, N., & Wawo, A. H. (2015). Mengungkap keberadaan dan potensi Gayam (Inocarpus fagifer) sebagai sumber pangan alternatif di Sukabumi, Jawa Barat [To reveal the existence and potential of Gayam (Inocarpus fagifer) as an alternative food source in Sukabumi, West Java]. Proceedings of the National Seminar on the Indonesian Biodiversity Society., 1(1), 71–77. https://doi.org/10.13057/psnmbi/m010111

Shi, P., Yu, K., Niinemets, Ü., & Gielis, J. (2020). Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae). Forests, 12(1), 41–50. https://doi.org/10.3390/f12010041

Song, J. H., Yang, S., & Choi, G. (2020). Taxonomic implications of leaf micromorphology using microscopic analysis: A tool for identification and authentication of Korean Piperales. Plants, 9(5), 1–15. https://doi.org/10.3390/plants9050566

Sun, J., Liu, C., Hou, J., & He, N. (2021). Spatial variation of stomatal morphological traits in grassland plants of the Loess Plateau. Ecological Indicators, 128, 107857. https://doi.org/10.1016/j.ecolind.2021.107857

Tiwari, S. P., Kumar, P., Yadav, D., & Chauhan, D. K. (2013). Comparative morphological, epidermal, and anatomical studies of Pinus roxburghii needles at different altitudes in the North-West Indian Himalayas. Turkish Journal of Botany, 37(1), 65–73. https://doi.org/10.3906/bot-1110-1

Torii, K. U. (2021). Stomatal development in the context of epidermal tissues. Annals of Botany, 128(2), 137–148. https://doi.org/10.1093/aob/mcab052

Tumpa, K., Šatović, Z., Vidaković, A., Idžojtić, M., Stipetić, R., & Poljak, I. (2022). Population variability of almond-leaved willow (Salix triandra L.) based on the leaf morphometry: isolation by distance and environment explain phenotypic diversity. Forests, 13(3), 420–429. https://doi.org/10.3390/f13030420

Turkheimer, E., & Waldron, M. (2000). Nonshared environment: a theoretical, methodological, and quantitative review. Psychological Bulletin, 126(1), 78. https://doi.org/10.1037/0033-2909.126.1.78

Wawo, A. H., Studi persebaran dan pemanfaatan gayam [Inocarpus fagifer (Parkinson ex Zollinger) Fosberg] di daerah istimewa Yogyakarta [Study of the distribution and utilization of gayam [Inocarpus fagifer (Parkinson ex Zollinger) Fosberg] in the special region of Yogyakarta. Biosfera, 28(3), 140–151. https://doi.org/10.20884/1.mib.2011.28.3.271

Ye, M., Zhu, X., Gao, P., Jiang, L., & Wu, R. (2020). Identification of quantitative trait loci for altitude adaptation of tree leaf shape with Populus szechuanica in the Qinghai-Tibetan plateau. Frontiers in Plant Science, 11(632), 1–13. https://doi.org/10.3389/fpls.2020.00632

Wang, C., Lu, H., Zhang, J., Mao, L., & Ge, Y. (2019). Bulliform phytolith size of rice and its correlation with hydrothermal environment: A preliminary morphological study on species in Southern China. Frontiers in Plant Science, 10, 1037. https://doi.org/10.3389/fpls.2019.01037

Zuch, D. T., Doyle, S. M., Majda, M., Smith, R. S., Robert, S., & Torii, K. U. (2022). Cell biology of the leaf epidermis: Fate specification. morphogenesis and coordination. The Plant Cell, 34(1), 209–227. https://doi.org/10.1093/plcell/koab250.




How to Cite

Smith, A., Sangur, K., Molle, D. F. ., Haurissa, L. ., Maulany, G. ., & Renyaan, B. . (2023). Leaf and Stomata Morphometrics of Gayam Inocarpus fagifer (Fabaceae) at Different Altitudes . Jurnal Riset Biologi Dan Aplikasinya, 5(1), 16–26. https://doi.org/10.26740/jrba.v5n1.p16-26



Abstract views: 380 , PDF Downloads: 218