In Silico Study of Secondary Metabolites in Dendrobium spp. as SARS-CoV-2 Antivirus on Main Protease (Mpro)

Authors

  • Anggiresti Kinasih Faculty of Biology, Universitas Gadjah Mada, Sleman, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta; Laboratory of Biotechnology, Faculty of Biology, Universitas Gadjah Mada, Special Region of Yogyakarta, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta
  • Alim El Hakim Faculty of Biology, Universitas Gadjah Mada, Sleman, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta; Biology Orchid Study Club, Faculty of Biology Universitas Gadjah Mada, Special Region of Yogyakarta, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta
  • Dyah Ayu Puspita Arum Faculty of Biology, Universitas Gadjah Mada, Sleman, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta; Biology Orchid Study Club, Faculty of Biology Universitas Gadjah Mada, Special Region of Yogyakarta, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta
  • Aulia Noor Ramadhani Faculty of Biology, Universitas Gadjah Mada, Sleman, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta; Biology Orchid Study Club, Faculty of Biology Universitas Gadjah Mada, Special Region of Yogyakarta, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta
  • Endang Semiarti Faculty of Biology, Universitas Gadjah Mada, Sleman, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta;Laboratory of Biotechnology, Faculty of Biology, Universitas Gadjah Mada, Special Region of Yogyakarta, Jln. Teknika Selatan, Sekip Utara, Bulaksumur Yogyakarta

DOI:

https://doi.org/10.26740/jrba.v4n1.p19-25

Keywords:

antiviral, docking, Dendrobium, Mpro, SARS-CoV-2

Abstract

Infection and deaths cases by SARS-CoV-2 still increase and have not decreased significantly. Main protease (Mpro) is playing an important role in the replication of SARS-CoV-2 life cycle and causes of rapid transmission. Natural compounds are potential to be antiviral candidates with high bioavailability and low cytotoxicity. Orchids of Dendrobium genus have high diversity in Indonesia. Dendrobium has been used as traditional Chinese medicine and contains a group of secondary metabolites with antiviral activity. This study aimed to determine the potential of secondary metabolites of Dendrobium orchids as antiviral candidates against Mpro SARS-CoV-2 with in silico molecular docking. Secondary metabolites obtained from the KNApSAck and PubChem act as ligands. N3 inhibitors as native ligands were obtained from the RCSB. Mpro SARS-CoV-2 (6LU7) as a target macromolecule. Molecular docking was carried out using the online Covid-19 Docking Server using AutoDock Vina device. The most negative binding affinity value for each ligand compared to the native ligand binding affinity. Visualization with Discovery Studio software has been used to observe the protein amino acid residues contact for each ligand. The binding affinity of the native ligand inhibitor N3 is -7.5 kcal/mol. Based on the results of Mpro docking, three phytochemicals from Dendrobium spp., i.e., dendrocandin B, denthyrsinone, and denthyrsinol compounds have binding affinities of -7.7 kcal/mol, -7.9 kcal/mol, and -8.1 kcal/mol, respectively. It can be concluded that in Dendrobium orchid, denthyrsinol has the highest chance of binding so it has the potential to inhibit the Mpro SARS-CoV-2 activity.

References

Afriza, D., Suriyah, W. H., & Ichwan, S. J. A. (2018). In silico analysis of molecular interactions between the anti-apoptotic protein survivin and dentatin, nordentatin, and quercetin. Journal of Physics: Conference Series, 1073(3), 0–7. https://doi.org/10.1088/1742-6596/1073/3/032001

Arwansyah, A., Ambarsari, L. and Sumaryada, T.I. (2014). Simulasi docking senyawa kurkumin dan analognya sebagai inhibitor reseptor androgen pada kanker prostat [English: “Docking simulation of curcumin and its analogues as androgen receptor inhibitors in prostate cancer”]. Current Biochemistry, 1(1): 11-19

Barik, A., Rai, G., & Modi, G. (2020). Molecular docking and binding mode analysis of selected FDA approved drugs against COVID-19 selected key protein targets: An effort towards drug repurposing to identify the combination therapy to combat COVID-19. http://arxiv.org/abs/2004.06447

Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3). https://doi.org/10.1126/sciadv.1501240

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology, 5(4): 536-544

Cui, W., Y. Kailin, and Y. Haitao. (2020). Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Frontiers in Molecular Biosciences, 7(398): 1-10. doi: 10.3389/fmolb.2020.616341

Darmawati, I. A. P., Rai, I. N., Dwiyani, R., & Astarini, I. A. (2018). Short communication: The diversity of wild Dendrobium (Orchidaceae) in Central Bali, Indonesia. Biodiversitas, 19(3), 1110–1116. https://doi.org/10.13057/biodiv/d190345

de Ruyck, J., Brysbaert, G., Blossey, R., & Lensink, M. F. (2016). Molecular docking as a popular tool in drug design, an in silico travel. Advances and Applications in Bioinformatics and Chemistry, 9(1), 1–11. https://doi.org/10.2147/AABC.S105289

Fan, C., Wang, W., Wang, Y., Qin, G., & Zhao, W. (2001). Chemical constituents from Dendrobium densiflorum. Phytochemistry, 57(8), 1255–1258. https://doi.org/10.1016/S0031-9422(01)00168-6

Fandani, H. S., Mallomasang, S. N., & Korja, I. N. (2018). Keanekaragaman Jenis Anggrek pada beberapa Penangkaran di Desa Ampera dan Desa Karunia Kecamatan Palolo Kabupaten Sigi. Jurnal Warta Rimba, 6(9), 14–20

Forli, S., Huey, R., Pique, M. E., Sanner, M., Goodsell, D. S., & Arthur, J. (2016). 00006565-201002000-00017. 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051.Computational

Griffin, J. W. D. (2020). SARS-CoV and SARS-CoV-2 main protease residue interaction networks change when bound to inhibitor N3. Journal of Structural Biology, 211(3), 107575. https://doi.org/10.1016/j.jsb.2020.107575

Gutiérrez, R. M. P. (2010). Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. Journal of Medicinal Plants Research, 4(8), 592–638. https://doi.org/10.5897/JMPR10.012

Hamid, S., Mir, M. Y., & Rohela, G. K. (2020). Novel coronavirus disease (COVID-19): a pandemic (epidemiology, pathogenesis and potential therapeutics). New Microbes and New Infections, 35, 100679. https://doi.org/10.1016/j.nmni.2020.100679

Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S. I., Kim, L., Tong, S., Lu, X., Lindstrom, S., Pillai, S. K. (2020). First Case of 2019 Novel Coronavirus in the United States. New England Journal of Medicine, 382(10), 929–936. https://doi.org/10.1056/nejmoa2001191

Huang, M., Tang, T., Pang, P., Li, M., Ma, R., Lu, J., Shu, J., You, Y., Chen, B., Liang, J., Hong, Z., Chen, H., Kong, L., Qin, D., Pei, D., Xia, J., Jiang, S., & Shan, H. (2020). Treating COVID-19 with Chloroquine. Journal of Molecular Cell Biology, 12(4), 322–325. https://doi.org/10.1093/jmcb/mjaa014

Hwang, J. H., Hwang, I. S., Liu, Q. H., Woo, E. R., & Lee, D. G. (2012). Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie, 94(8), 1784–1793. https://doi.org/10.1016/j.biochi.2012.04.010

Ivanović, V., Rančić, M., Arsić, B., & Pavlović, A. (2020). Lipinski’s rule of five, famous extensions and famous exceptions. Popular Scientific Article, 3(1), 171–177

Jain, R., & Mujwar, S. (2020). Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. Structural Chemistry, 31(6), 2487–2499. https://doi.org/10.1007/s11224-020-01605-w

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y

Khaerunnisa, S., Kurniawan, H., Awaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study Molecular Docking, ADME-Toxicity Prediction, and Evaluation of Curcumin Derivative Compound as Inhibitor Inflamation on Rheumathoid Arth. Preprints, March. https://doi.org/10.20944/preprints202003.0226.v1

Kong, R., Yang, G., Xue, R., Liu, M., Wang, F., Hu, J., Guo, X., & Chang, S. (2020). COVID-19 Docking Server: A meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19. Bioinformatics, 36(20), 5109–5111. https://doi.org/10.1093/bioinformatics/btaa645

Lam, Y., Ng, T. B., Yao, R. M., Shi, J., Xu, K., Sze, S. C. W., & Zhang, K. Y. (2015). Evaluation of chemical constituents and important mechanism of pharmacological biology in Dendrobium plants. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/841752

Li, X., Geng, M., Peng, Y., Meng, L., & Lu, S. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, 10(2), 102–108. https://doi.org/10.1016/j.jpha.2020.03.001

Moudi, M., Go, R., Yong, C., Yien, S., & Nazre, M. (2013). A Review on Molecular Systematic of the Genus Dendrobium Sw . 2 (April), 71–78

Pandey, P., Rane, J. S., Chatterjee, A., Kumar, A., & Ray, S. (2020). Targeting SARS-CoV-2 Spike Protein of COVID-19 with Naturally Occurring Phytochemicals: An in Silco Study for Drug Development. ChemRxiv. https://doi.org/10.26434/chemrxiv.12094203.v1

Pendyala, B., & Patrasa, A. (2020). In silico Screening of Food Bioactive Compounds to Predict Potential Inhibitors of COVID-19 Main protease (M. ChemRxiv, 11–44)

Prabowo, S.A.A.E.and Santoso,B, 2018. Profil in silico Interaksi Senyawa Alam ketumbar dan Adas Bintang sebagai Inhibitor Peptida Deformilase Mycobacterium tuberculosis (3SVJ dan 1WS1) menggunakan Bantuan PyRx-Vina [English: “In silico Profile of Interaction of Coriander and Star Anise Natural Compounds as Peptide Deformylase Inhibitors of Mycobacterium tuberculosis (3SVJ and 1WS1) using PyRx-Vina Assistance”]. Proceeding of the URECOL, pp.402-408

Pradani, T.C., Manampiring, A.E., Kepel, B.J., Budiarso, F.D. and Bodhi, W., 2021. Molecular Docking Terhadap Senyawa Kurkumin dan Arturmeron pada Tumbuhan Kunyit (Curcuma Longa Linn.) yang Berpotensi Menghambat Virus Corona [English: “Molecular Docking of Curcumin and Arturmeron Compounds in Turmeric Plants (Curcuma Longa Linn.) Potentially Inhibiting Corona Virus”]. eBiomedik 9(2): 208-214

Purwaniati, and A. Asnawi. (2020). Target Kerja Obat Antivirus Covid-19: Review Drug Target of Antivirus Covid-19: Review. Jurnal Farmagazine, 7(2): 30-42

Rachmania, R. A., Supardi, and O. A. Larasati. (2015). In Silico Analysis of Diterpenoid Lactone Compounds of Bitter Herbs (Andrographis paniculate Nees) on Alpha-Glucosidase Receptor as Antidiabetic Type II Agents. PHARMACY,12(2): 210-222

Rane, J. S., Chatterjee, A., Kumar, A., & Ray, S. (2020). Targeting SARS-CoV-2 Spike Protein of COVID-19 with Naturally Occurring Phytochemicals: An in Silco Study for Drug Development. ChemRxiv, https://doi.org/10.26434/chemrxiv.12094203.v1

Sari, I.W., Junaidin, J. and Pratiwi, D., 2020. Studi Molecular Docking Senyawa Flavonoid Herba Kumis Kucing (Orthosiphon stamineus B.) Pada Reseptor Α-Glukosidase Sebagai Antidiabetes Tipe 2 [English: “. Molecular Docking Study of Flavonoid Compounds of Cat's Whisker Herb (Orthosiphon stamineus B.) on -Glucosidase Receptors as Type 2 Antidiabetic”]. Jurnal Farmagazine, 7(2), pp.54-60

Semiarti, E., Purwantoro, A., & Puspita Sari, I. (2020). Biotechnology Approaches on Characterization, Mass Propagation, and Breeding of Indonesian Orchids Dendrobium lineale (Rolfe.) and Vanda tricolor (Lindl.) with Its Phytochemistry, 1–14. https://doi.org/10.1007/978-3-030-11257-8_12-1

Septiana, E., 2020. Prospek Senyawa Bahan Alam Sebagai Antivirus Dalam Menghambat SARS-CoV-2 [English: “Prospects of Natural Compounds As Antivirals In Inhibiting SARS-CoV-2”]. Biotrends 11(1): 30-38

Singh, Siddhartha Singh, Amit Kumar, Sunil Kumar, Mukul Pandey, Pramod Singh, & Mayanglambam. (2012). Medicinal Properties and Uses of Orchids: a Concise Review. Elixir Appl. Botany, 2012 (November), 11627–11634. https://www.researchgate.net/publication/292131192_Medicinal_properties_and_uses_of_orchids_a_concise_review

Suhadi, A., Rizarullah, R., & Feriyani, F. (2019). Simulasi Docking Senyawa Aktif Daun Binahong Sebagai Inhibitor Enzyme Aldose Reductase. Sel Jurnal Penelitian Kesehatan, 6(2), 55–65. https://doi.org/10.22435/sel.v6i2.1651

Sumon, T. A., Hussain, M. A., Hasan, M. T., Hasan, M., Jang, W. J., Bhuiya, E. H., Chowdhury, A. A. M., Sharifuzzaman, S. M., Brown, C. L., Kwon, H. J., & Lee, E. W. (2021). A Revisit to the Research Updates of Drugs, Vaccines, and Bioinformatics Approaches in Combating COVID-19 Pandemic. Frontiers in Molecular Biosciences, 7. https://doi.org/10.3389/fmolb.2020.585899

Suryadi Budi Utomo, Fajar Sanubari, Budi Utami, dan N. D. N., & Program. (2017). Aktivitas Analgesik Senyawa Turunan Meperidin Menggunakan Metode Semiempiris Am1 Analysis of a Quantitative Relationship Between the Structure and Analgesic Activity of Meperidin Derivatives Using. (Jurnal Kimia Dan Pendidikan Kimia, 2 (3), 158–168

Syahputra, G., L. Ambarsari, and T. Sumaryada. (2014). Simulasi Docking Kurkumin Enol, Bisdemetoksikurkumin dan Analognya sebagai Inhibitor Enzim12-Lipoksigenase [English: “Docking Simulation of Enol Curcumin, Bisdemethoxycurcumin and Their Analogues as Enzyme 12-Lipoxygenase Inhibitors”]. Jurnal Biofisika, 10 (1): 55-67

Ti, H., Zhuang, Z., Yu, Q., & Wang, S. (2021). Progress of plant medicine derived extracts and alkaloids on modulating viral infections and inflammation. Drug Design, Development and Therapy, 15, 1385–1408. https://doi.org/10.2147/DDDT.S299120

Tian, S., Hu, N., Lou, J., Chen, K., Kang, X., Xiang, Z., Chen, H., Wang, D., Liu, N., Liu, D., Chen, G., Zhang, Y., Li, D., Li, J., Lian, H., Niu, S., Zhang, L., & Zhang, J. (2020). Characteristics of COVID-19 infection in Beijing. Journal of Infection, 80 (4), 401–406. https://doi.org/10.1016/j.jinf.2020.02.018

Trivedi, G. N., Karlekar, J. T., Dhameliya, H. A., & Panchal, H. (2020). A review on the novel coronavirus disease based on in-silico analysis of various drugs and target proteins. Journal of Pure and Applied Microbiology, 14 (1), 849–860. https://doi.org/10.22207/JPAM.14.SPL1.22

Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA-NA. https://doi.org/10.1002/jcc.21334

Tutunchi, H., Naeini, F., Ostadrahimi, A., & Hosseinzadeh-Attar, M. J. (2020). Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19. Phytotherapy Research, 34 (12), 3137–3147. https://doi.org/10.1002/ptr.6781

Umadevi, P., Manivannan, S., Fayad, A. M., & Shelvy, S. (2020)p. In silico analysis of phytochemicals as potential inhibitors of proteases involved in SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics, 0 (0), 1–9. https://doi.org/10.1080/07391102.2020.1866669

Utomo, S. B., F. Sanubari, B. Utami, and N. D. Nurhayati. (2017). Analisis Hubungan Kuantitatif Struktur dan Aktivitas Analgesik Senyawa Turunan Meperidin Menggunakan Metode Semiempiris AM1 [English: “Analysis of the Quantitative Relationship of the Structure and Analgesic Activity of Meperidine Derivative Compounds Using the AM1. Semiempirical Method”]. Jurnal Kimia dan Pendidikan Kimia, 2(3): 158-168

Vicidomini, C., Roviello, V., & Roviello, G. N. (2021). In silico investigation on the interaction of chiral phytochemicals from opuntia ficus-indica with sars-cov-2 mpro. Symmetry, 13(6). https://doi.org/10.3390/sym13061041

Wang, C., Horby, P.W., Hayden, F.G. and Gao, G.F. (2020). A novel coronavirus outbreak of global health concern. The lancet, 395 (10223): 470-473

Wang, W., Tang, J., & Wei, F. 2020. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. Journal of Medical Virology, 92 (4), 441–447. https://doi.org/10.1002/jmv.25689

Wang, Z., Zhao, M., Cui, H., Li, J., & Wang, M. (2020). Transcriptomic Landscape of Medicinal Dendrobium Reveals Genes Associated With the Biosynthesis of Bioactive Components. Frontiers in Plant Science, 11 (April), 1–11. https://doi.org/10.3389/fpls.2020.00391

Wells, J. E., & McGee, M. A. (2008). Violations of the usual sequence of drug initiation: Prevalence and associations with the development of dependence in the New Zealand Mental Health Survey. Journal of Studies on Alcohol and Drugs, 69 (6), 789–795. https://doi.org/10.15288/jsad.2008.69.789

Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M., & Rao, Z. (2008). Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design. Journal of Virology, 82 (5), 2515–2527. https://doi.org/10.1128/jvi.02114-07

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/nejmoa2001017

Downloads

Published

2022-03-31

How to Cite

Kinasih, A., El Hakim, A. ., Arum, D. A. P., Ramadhani, A. N., & Semiarti, E. (2022). In Silico Study of Secondary Metabolites in Dendrobium spp. as SARS-CoV-2 Antivirus on Main Protease (Mpro) . Jurnal Riset Biologi Dan Aplikasinya, 4(1), 19–25. https://doi.org/10.26740/jrba.v4n1.p19-25

Issue

Section

Articles
Abstract views: 432 , PDF Downloads: 482