Beta-Glucosidase 1 (bgl1) Gene Analysis in Mutant and Wild-type of Penicillium sp. ID10-T065

Authors

  • Vilya Syafriana Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia (UI). Kampus UI Gedung E Lt. 2, Jln. Lingkar Kampus Raya, Pondok Cina, Beji, Kota Depok 16424, Jawa Barat, Indonesia; Faculty of Pharmacy, National Institute of Science and Technology (ISTN), Indonesia. Jl. Moh Kahfi II, Srengseng Sawah 12640, Jagakarsa, Jakarta, Indonesia; Faculty of Pharmacy, National Institute of Science and Technology (ISTN), Indonesia. Jl. Moh Kahfi II, Srengseng Sawah 12640, Jagakarsa, Jakarta, Indonesia
  • Sukma Nuswantara Research Centre for Genetic Engineering, National Research and Innovation Agency (BRIN), Indonesia. Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
  • Wibowo Mangunwardoyo Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia (UI). Kampus UI Gedung E Lt. 2, Jln. Lingkar Kampus Raya, Pondok Cina, Beji, Kota Depok 16424, Jawa Barat, Indonesia
  • Puspita Lisdiyanti Research Centre for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Indonesia. Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia

DOI:

https://doi.org/10.26740/jrba.v4n1.p1-8

Keywords:

Base alteration, Beta-glucosidase, Mutation, Penicillium, Transition, Transversion.

Abstract

In the previous study, Penicillium sp. ID10-T065 has been mutated using ultraviolet (UV), ethyl methyl sulfonate (EMS) and the combination of UV-EMS to increase Beta-glucosidase (bgl) activity. There were three mutants selected, UV13 (UV mutant), EM31 (EMS mutant), and UM23 (UV-EMS mutant). This study examined the mutations in the bgl gene encoding (bgl1) as well as sequence differences between mutants and wild-type of Penicillium sp. ID10-T065. The gene analysis was performed by PCR amplification and sequencing of the bgl1 gene. The results of bgl1 gene sequences (600 bp) from mutants were aligned with the wild-type, it was discovered that there were base alterations from position 2025 to 2050. Mutant UV13 showed the highest base alterations (7 bases) which occurred at position 2027 (T→C); 2036 (T→G); 2040 (T→G); 2047 (G→C); and 2048-2050 (TTG→GGA). Mutant EM31 showed alterations in five bases at positions 2034 (G→A), 2036 (T→G), 2037 (G→C), 2044 (G→C), and 2047 (G→T). Mutant UM23 showed two base alterations at position 2025 (T→A) and 2037 (G→C). UV irradiation and EMS mutation resulted in transition and transversion DNA, whereas the combination of UV-EMS mutation resulted in transversion mutations. Base alterations in UV13 and EM31 mutants, causing missense and silent mutation, while in UM23 mutant only silent mutations occur. The bgl1 gene analysis showed that mutation using UV light was more effective than using EMS or a combination of UV-EMS in Penicillium sp. ID10-T065.

References

Adrio, J. L., & Demain, A. L. (2006). Genetic improvementof processes yielding microbial products. FEMS Microbiology Reviews, 30(2), 187–214. https://doi.org/10.1111/j.1574-6976.2005.00009.x

Afifi, A. F., Abo-Elmagd, H. I., & Housseiny, M. M. (2014). Improvement of alkaline protease production by Penicillium chrysogenum NRRL 792 through physical and chemical mutation, optimization, characterization and genetic variation between mutant and wild-type strains. Annals of Microbiology, 64(2), 521–530. https://doi.org/10.1007/s13213-013-0685-y

Ager, D. D., & Haynes, R. H. (1990). Analysis of interactions between mutagens, I. Heat and ultraviolet light in Saccharomyces cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 232(2), 313–326. https://doi.org/10.1016/0027-5107(90)90138-T

Caniago, A., Mangunwardoyo, W., Nuswantara, S., & Lisdiyanti, P. (2015). Improvement of endoglucanase activity in Penicillium oxalicum ID10-T065 by ultra violet irradiation and ethidium bromide mutation. Annales Bogorienses, 19(2), 27–38. http://dx.doi.org/10.14203/ann.bogor.2015.v19.n2.27-38

Chandra, M., Kalra, A., Sangwan, N. S., Gaurav, S. S., Darokar, M. P., & Sangwan, R. S. (2009). Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases. Bioresource Technology, 100(4), 1659–1662. https://doi.org/10.1016/j.biortech.2008.09.011

De Nicolás-Santiago, S., Regalado-González, C., García-Almendárez, B., Fernández, F. J., Téllez-Jurado, A., & Huerta-Ochoa, S. (2006). Physiological, morphological, and mannanase production studies on Aspergillus niger uam-gs1 mutants. Electronic Journal of Biotechnology, 9(1), 50–60. https://doi.org/10.2225/vol9-issue1-fulltext-2

Ega, S. L., Drendel, G., Petrovski, S., Egidi, E., Franks, A. E., & Muddada, S. (2020). Comparative analysis of structural variations due to genome shuffling of Bacillus Subtilis vs15 for improved cellulase production. International Journal of Molecular Sciences, 21(4). https://doi.org/10.3390/ijms21041299

El-Bondkly, A. M., & Keera, A. A. (2007). UV- and EMS- induced mutations affecting synthesis of alkaloids and lipase in UV- and EMS- induced mutations affecting synthesis of alkaloids and lipase in. Penicillium roquefortii. Arab J Biotechnol, 10, 241–248

Goodsell, D. S. (2004). The Molecular Perspective: Ultraviolet Light and Pyrimidine Dimers. The Oncologist, 6(3), 298–299. https://doi.org/10.1634/theoncologist.6-3-298

Griffiths, A. J. F., Miller, J.H., Suzuki, D.T., Leontin, R.C., & Gelbart, W.M. (2000). An introduction to genetic analysis. 7th ed. New York: W.H. Freeman. From http//www.ncbi.nlm.nih.gov/books/NBK 21936

Habibi, M. B., & Pezeshki, N. P. (2013). Bacterial Mutation; Types, Mechanisms and Mutant Detection Methods: a Review. European Scientific Journal, 4(December), 1857–7881. https://doi.org/10.19044/esj.2013.v9n10p%25p

Hogg, S. (2005). Essential Microbiology. West Sussex: John Wiley & Sons, Ltd

Hooley, P., Shawcross, S. G., & Strike, P. (1988). An adaptive response to alkylating agents in Aspergillus nidulans. Current Genetics, 14(5), 445–449. https://doi.org/10.1007/BF00521267

Ike, M., Park, J. Y., Tabuse, M., & Tokuyasu, K. (2010). Cellulase production on glucose-based media by the UV-irradiated mutants of Trichoderma reesei. Applied Microbiology and Biotechnology, 87(6), 2059–2066. https://doi.org/10.1007/s00253-010-2683-3

Ikehata, H., & Ono, T. (2011). The Mechanisms of UV Mutagenesis. Journal of Radiation Research, 52(2), 115–125. https://doi.org/10.1269/jrr.10175

Irfan, M., Javed, J., & Syed, Q. (2011). UV mutagenesis of Aspergillus niger for enzyme production in submerged fermentation. J. Biochem. Mol. Biol, 44(4), 137–140

Jung, Y. R., Shin, H. Y., Yoo, H. Y., Um, Y., & Kim, S. W. (2012). Production of cellulases and β-glucosidase in Trichoderma reesei mutated by proton beam irradiation. Korean Journal of Chemical Engineering, 29(7), 925–930. https://doi.org/10.1007/s11814-011-0272-5

Keller, M. B., Sørensen, T. H., Krogh, K. B. R. M., Wogulis, M., Borch, K., & Westh, P. (2020). Activity of fungal β-glucosidases on cellulose. Biotechnology for Biofuels, 13(1), 1–7. https://doi.org/10.1186/s13068-020-01762-4

Kim, Y., Schumaker, K. S., & Zhu, J.-K. (2006). EMS Mutagenesis of Arabidopsis. Methods in Molecular Biology, 323(6), 101–103. https://doi.org/10.1385/1-59745-003-0:101

Krogh, K. B. R. M., Harris, P. V., Olsen, C. L., Johansen, K. S., Hojer-Pedersen, J., Borjesson, J., & Olsson, L. (2010). Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Applied Microbiology and Biotechnology, 86(1), 143–154. https://doi.org/10.1007/s00253-009-2181-7

Larue, K., Melgar, M., & Martin, V. J. J. (2016). Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae. Biotechnology for Biofuels, 9(1), 1–15. https://doi.org/10.1186/s13068-016-0470-9

Liu, G., Zhang, L., Wei, X., Zou, G., Qin, Y., Ma, L., Li, J., Zheng, H., Wang, S., Wang, C., Xun, L., Zhao, G. P., Zhou, Z., & Qu, Y. (2013). Genomic and Secretomic Analyses Reveal Unique Features of the Lignocellulolytic Enzyme System of Penicillium decumbens. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0055185

Livneh, Z., Cohen-Fix, O., Skaliter, R., & Elizur, T. (1993). Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Critical Reviews in Biochemistry and Molecular Biology, 28(6), 465–513. https://doi.org/10.3109/10409239309085136

Luo, G. H., Li, X. H., Han, Z. J., Zhang, Z. C., Yang, Q., Guo, H. F., & Fang, J. C. (2016). Transition and transversion mutations are biased towards GC in transposons of Chilo suppressalis (Lepidoptera: Pyralidae). Genes, 7(10). https://doi.org/10.3390/genes7100072

Lynd, L. R., Weimer, P. J., Zyl, W. H. Van, & Isak, S. (2002). Microbial Cellulose Utilization : Fundamentals and Biotechnology Microbial Cellulose Utilization : Fundamentals and Biotechnology Downloaded from http://mmbr.asm.org/ on February 6 , 2013 by Indian Institute of Technology Madras. Microbiology and Molecular Biology Reviews, 66(3), 506–577. https://doi.org/10.1128/MMBR.66.3.506

Porceddu, A., & Camiolo, S. (2017). Patterns of spontaneous nucleotide substitutions in grape processed pseudogenes. Diversity, 9(4). https://doi.org/10.3390/d9040045

Rajeshkumar, J., & Ilyas, M. (2011). Production of Phosphatase by mutated fungal strains. International Multidisciplinary Research, 1(5), 23–29. https://updatepublishing.com/journal/index.php/imrj/article/view/1454

Ramzan, M., Asgher, M., Sheikh, M. A., & Bhatti, H. N. (2014). Hyperproduction of Manganese Peroxidase through Chemical Mutagenesis of Trametes versicolor IBL-04 and Optimization of Process Parameters. BioResources, 8(3), 3953–3966. https://doi.org/10.15376/biores.8.3.3953-3966

Saitou, N. (2013). Introduction to Evolutionary Genomics. In:Evolution Today. Scudder G.& Reveal J. (Eds.), 17, 139–144. https://doi.org/10.1007/978-1-4471-5304-7

Sega, G. A. (1984). A review of the genetic effects of ethyl methanesulfonate. Mutation Research/Reviews in Genetic Toxicology, 134(2–3), 113–142. https://doi.org/10.1016/0165-1110(84)90007-1

Shafique, S., Bajwa, R., & Shafique, S. (2009). Mutation of Alternaria tenuissima FCBP-252 for hyper-active α-amylase. Indian Journal of Experimental Biology, 47(7), 591–596. PMID: 19761044

Singh, A., Patel, A. K., Adsul, M., & Singhania, R. R. (2017). Genetic modification: A tool for enhancing cellulase secretion. Biofuel Research Journal, 4(2), 600–610. https://doi.org/10.18331/BRJ2017.4.2.5

Singh, G., Verma, A. K., & Kumar, V. (2016). Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech, 6(1), 1–14. https://doi.org/10.1007/s13205-015-0328-z

Sørensen, A., Lübeck, M., Lübeck, P. S., & Ahring, B. K. (2013). Fungal beta-glucosidases: A bottleneck in industrial use of lignocellulosic materials. Biomolecules, 3(3), 612–631. https://doi.org/10.3390/biom3030612

Srivastava, N., Rathour, R., Jha, S., Pandey, K., Srivastava, M., Thakur, V. K., Sengar, R. S., Gupta, V. K., Mazumder, P. B., Khan, A. F., & Mishra, P. K. (2019). Microbial beta glucosidase enzymes: Recent advances in biomass conversation for biofuels application. Biomolecules, 9(6), 1–23. https://doi.org/10.3390/biom9060220

Syafriana, V., Nuswantara, S., Mangunwardoyo, W., & Lisdiyanti, P. (2014). Enhancement of β -Glucosidase Activity in Penicillium sp. by Random Mutation with Ultraviolet and Ethyl Methyl Sulfonate. Annales Bogorienses, 18(2), 27-33. http://dx.doi.org/10.14203/ann.bogor.2014.v18.n2.27-33

Voet, D. & Voet, J.G. (2011). Biochemistry. 4th ed. New Jersey: John Wiley & Sons, Inc.

Downloads

Published

2022-03-31

How to Cite

Syafriana, V., Nuswantara, S., Mangunwardoyo, W. ., & Lisdiyanti, P. . (2022). Beta-Glucosidase 1 (bgl1) Gene Analysis in Mutant and Wild-type of Penicillium sp. ID10-T065. Jurnal Riset Biologi Dan Aplikasinya, 4(1), 1–8. https://doi.org/10.26740/jrba.v4n1.p1-8

Issue

Section

Articles
Abstract views: 324 , PDF Downloads: 390