Changes in Serum Betatrophin Levels in Obese Women after Two-Weeks of Moderate-intensity Aerobic Exercise

Authors

  • Nabila Ainaya Mubasyiroh Universitas Negeri Malang
  • Sugiharto Sugiharto Universitas Negeri Malang
  • Desiana Merawati Universitas Negeri Malang
  • Nur Ezza Fazleen Mohd Fathil Management and Science University
  • Purwo Sri Rejeki Universitas Airlangga
  • Fikri Sasongko Widyatama Universitas Airlangga
  • Adi Pranoto Universitas Airlangga

DOI:

https://doi.org/10.26740/jossae.v9n1.p1-7

Keywords:

Betatrophin levels, aerobic exercise, obese women, metabolic health

Abstract

Obesity is associated with increased betatrophin levels, which can lead to fat metabolism disorders. Increased levels of betatrophin may inhibit the performance of the lipoprotein lipase (LPL) enzyme, making it difficult for triglycerides (TG) in the blood to be converted into energy and causing excessive fat accumulation in adipose tissue. Physical exercise has been reported to increase energy expenditure in obesity. This study aims to determine changes in betatrophin in obese women after moderate-intensity aerobic exercise. A total of twenty obese women aged 20-30 years took part in the study. The participants were administered into two groups: control (K1) and moderate-intensity aerobic exercise (K2). Moderate-intensity aerobic exercise (60-70% HRmax) was performed five times a week for two weeks. Pretest and posttest betatrophin levels were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) Kit method. Data were analyzed using a paired samples t-test with a significance level of p ≤ 0.05. The results showed the average pretest and posttest betatrophin levels in K1 (0.44±0.14 vs 0.44±0.13 ng/mL; p=0.894), and K2 (0.41±0.05 vs 0.31±0.03 ng/mL; p=0.000). According to the study's findings, moderate-intensity aerobic exercise (60-70% HRmax) performed five times per week for two weeks positively impacted alterations in betatrophin levels in obese women.

References

Abu-Farha, M., Abubaker, J., & Tuomilehto, J. (2017). ANGPTL8 (betatrophin) role in diabetes and metabolic diseases. Diabetes/Metabolism Research and Reviews, 33(8). https://doi.org/10.1002/dmrr.2919

Abu-Farha, M., Sriraman, D., Cherian, P., AlKhairi, I., Elkum, N., Behbehani, K., & Abubaker, J. (2016). Circulating ANGPTL8/betatrophin is increased in obesity and reduced after exercise training. PLoS ONE, 11(1), 2–13. https://doi.org/10.1371/journal.pone.0147367

Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Rasbach, K. A., Boström, E. A., Choi, J. H., Long, J. Z., Kajimura, S., Zingaretti, M. C., Vind, B. F., Tu, H., Cinti, S., Højlund, K., Gygi, S. P., & Spiegelman, B. M. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468. https://doi.org/10.1038/nature10777

Demeco, A., de Sire, A., Marotta, N., Spanò, R., Lippi, L., Palumbo, A., Iona, T., Gramigna, V., Palermi, S., Leigheb, M., Invernizzi, M., & Ammendolia, A. (2022). Match Analysis, Physical Training, Risk of Injury and Rehabilitation in Padel: Overview of the Literature. International Journal of Environmental Research and Public Health, 19(7). https://doi.org/10.3390/ijerph19074153

Fu, C. P., Oczypok, E. E., Ali, H., DeLany, J. P., Reeves, V. L., Chang, R. F., & Kershaw, E. E. (2022). Effect of physical activity in a weight loss program on circulating total ANGPTL8 concentrations in northern Americans with obesity: A prospective randomized controlled trial. Nutrition, Metabolism and Cardiovascular Diseases, 32(7), 1725–1733. https://doi.org/10.1016/j.numecd.2022.04.006

Fu, Z., Berhane, F., Fite, A., Seyoum, B., Abou-Samra, A. B., & Zhang, R. (2014). Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity. Scientific Reports, 4, 1–5. https://doi.org/10.1038/srep05013

Gusarova, V., Alexa, C. A., Na, E., Stevis, P. E., Xin, Y., Bonner-Weir, S., Cohen, J. C., Hobbs, H. H., Murphy, A. J., Yancopoulos, G. D., & Gromada, J. (2014). ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell, 159(3), 691–696. https://doi.org/10.1016/j.cell.2014.09.027

Hall, J. (2016). Guyton and Hall Textbook of Medical Physiology (13th Edtition). Elsevier.

Hariyanto, A., Mustar, Y. S., Sholikhah, A. M., Rusdiawan, A., Susanto, I. H., & Purnomo, M. (2023). Physical Activity Level amongst University Students and Lecturers across Majors and Programs in Indonesia. Physical Education Theory and Methodology, 23(1), 49–57. https://doi.org/10.17309/tmfv.2023.1.07

Hruby, A., & Hu, F. B. (2015). The Epidemiology of Obesity: A Big Picture. PharmacoEconomics, 33(7), 673–689. https://doi.org/10.1007/s40273-014-0243-x

Karaman, M. E., Arslan, C., & Gürsu, M. F. (2022). Effects of different exercise loads on serum betatrophin (ANGPTL-8/lipasin) and cartonectin (CTRP-3) levels in metabolic syndrome. Turkish Journal of Biochemistry, 47(1), 71–78. https://doi.org/10.1515/tjb-2021-0120/html

Kugelberg, E. (2013). Diabetes: Betatrophin-Inducing β-cell expansion to treat diabetes mellitus? Nature Reviews Endocrinology, 9(7), 379. https://doi.org/10.1038/nrendo.2013.98

Leal, L. G., Lopes, M. A., & Batista, M. L. (2018). Physical exercise-induced myokines and muscle-adipose tissue crosstalk: A review of current knowledge and the implications for health and metabolic diseases. Frontiers in Physiology, 9(SEP), 1–17. https://doi.org/10.3389/fphys.2018.01307

Liao, Z. Z., Qi, X. Y., Wang, Y. Di, Li, J. Y., Gu, Q. Q., Hu, C., Hu, Y., Sun, H., Ran, L., Yang, J., Liu, J. H., & Xiao, X. H. (2020). Betatrophin knockdown induces beiging and mitochondria biogenesis of white adipocytes. Journal of Endocrinology, 245(1), 93–100. https://doi.org/10.1530/JOE-19-0447

Palermi, S., Bragazzi, N. L., Cular, D., Ardigò, L. P., & Padulo, J. (2022). How Chest Press-Based Exercises Can Alleviate the Burden of Cardiovascular Diseases. Human Movement, 23(4), 88–98. https://doi.org/10.5114/hm.2021.106911

Pavilianingtyas, A. (2017). Faktor agen, pejamu, dan lingkungan kejadian obesitas pada anak usia 5-6 tahun. Jurnal Gizi Indonesia (The Indonesian Journal of Nutrition), 5(2), 105–111. https://doi.org/10.14710/jgi.5.2.105-111

Rejeki, P. S., Baskara, P. G., Herawati, L., Pranoto, A., Setiawan, H. K., Lesmana, R., & Halim, S. (2022). Moderate-intensity exercise decreases the circulating level of betatrophin and its correlation among markers of obesity in women. Journal of Basic and Clinical Physiology and Pharmacology, 33(6), 769–777. https://doi.org/10.1515/jbcpp-2021-0393

Sanchis-Gomar, F., & Perez-Quilis, C. (2014). The p38–PGC-1α–irisin–betatrophin axis. Adipocyte, 3(1), 67–68. https://doi.org/10.4161/adip.27370

Sholikhah, A. M., & Tuah, N. A. A. H. M. (2021). Predictors of Overweight and Obesity Among Children and Adolescents in Developing Countries: A Literature Review. 338–350. https://doi.org/10.2991/assehr.k.211223.059

Susanto, H., Sugiharto, Taufiq, A., Pranoto, A., & Dwi Trijoyo Purnomo, J. (2023). Dynamic alteration of plasma levels of betatrophin in younger female onset obesity post acute moderate-intensity exercise training. Saudi Journal of Biological Sciences, 30(2), 103546. https://doi.org/10.1016/j.sjbs.2022.103546

Susanto, H., Taufiq, A., Sugiharto, Merawati, D., Marsyidah Badu, K., Trijoyo Purnomo, J. D., & Yuda Handaya, A. (2020). Moderate-Intensity Exercise and Musical Co-Treatment Decreased the Circulating Level of Betatrophin. International Journal of Endocrinology, 2020. https://doi.org/10.1155/2020/3098261

Van Dijk, J. W., Venema, M., Van Mechelen, W., Stehouwer, C. D. A., Hartgens, F., & Van Loon, L. J. C. (2013). Effect of moderate-intensity exercise versus activities of daily living on 24-hour blood glucose homeostasis in male patients with type 2 diabetes. Diabetes Care, 36(11), 3448–3453. https://doi.org/10.2337/dc12-2620

Xie, X., Gao, T., Yang, M., Chen, P., Jin, H., Yang, L., & Yu, X. (2015). Associations of betatrophin levels with irisin in Chinese women with normal glucose tolerance. Diabetology and Metabolic Syndrome, 7(1), 1–8. https://doi.org/10.1186/s13098-015-0019-2

Ye, J., Qin, Y., Wang, D., Yang, L., & Yuan, G. (2019). The Relationship between Circulating ANGPTL8/Betatrophin Concentrations and Adult Obesity: A Meta-Analysis. Disease Markers, 2019. https://doi.org/10.1155/2019/5096860

Zhang, R. (2016). The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open Biology, 6(4). https://doi.org/10.1098/rsob.150272

Zhang, R., & Abou-Samra, A. B. (2014). A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: Consensus and controversy. Cardiovascular Diabetology, 13(1), 1–9. https://doi.org/10.1186/s12933-014-0133-8

Zhang, Y., Li, R., Meng, Y., Li, S., Donelan, W., Zhao, Y., Qi, L., Zhang, M., Wang, X., Cui, T., Yang, L. J., & Tang, D. (2014). Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 63(2), 514–525. https://doi.org/10.2337/db13-1106

Zheng, C., & Liu, Z. (2015). Vascular function, insulin action, and exercise: An intricate interplay. Trends in Endocrinology and Metabolism, 26(6), 297–304. https://doi.org/10.1016/j.tem.2015.02.002

Zheng, J., Liu, J., Hong, B. S., Ke, W., Huang, M., & Li, Y. (2020). Circulating betatrophin/ANGPTL8 levels correlate with body fat distribution in individuals with normal glucose tolerance but not those with glucose disorders. BMC Endocrine Disorders, 20(1), 1–9. https://doi.org/10.1186/s12902-020-0531-8

Published

2024-05-31

How to Cite

Mubasyiroh, N. A., Sugiharto, S., Merawati, D., Fathil, N. E. F. M., Rejeki, P. S., Widyatama, F. S., & Pranoto, A. (2024). Changes in Serum Betatrophin Levels in Obese Women after Two-Weeks of Moderate-intensity Aerobic Exercise. JOSSAE (Journal of Sport Science and Education), 9(1), 1–7. https://doi.org/10.26740/jossae.v9n1.p1-7

Issue

Section

Articles
Abstract views: 69 , PDF Downloads: 56 , PDF Downloads: 15