PENGARUH KECEPATAN PENGELASAN MIG TERHADAP KEKUATAN TARIK DAN PERUBAHAN STRUKTUR PATAHAN MAKRO PADA SAMBUNGAN ALUMINIUM
DOI:
https://doi.org/10.26740/otopro.v21n1.p6-12Keywords:
MIG, aluminium, robotic, weldingAbstract
MIG (Metal Inert Gas) welding is a welding process that uses rolled electrodes which are the same as the base metal and uses a protective gas. Aluminum is one of the most commonly used metals in the industrial world. Connecting aluminum by welding is a challenge in itself because of its high heat conductivity. This is why a lot of research has been carried out on welding aluminum. This research aims to investigate the effect of travel speed on the tensile strength and macro structure of welds from the robotic welding process. The research was carried out using experimental methods and observing the macro structure of the fracture results. The research results, it was found that changes in welding speed (travel speed) in the aluminum MIG welding process showed a decreasing trend in maximum tensile strength. The highest tensile strength was obtained at the TS variation of 40 mm/minute, while at TS 70 mm/minute the tensile strength was lower. The higher the welding speed, the lower the resulting tensile strength. This is due to reduced heat applied which affects weld penetration and metal joining. A lower welding speed results in better penetration and higher tensile strength, but a speed that is too slow can cause overheating and damage the metal micro structure. The macro structure of the fracture, it was found that higher welding speeds cause fractures that tend to be brittle with defects such as porosity, which can also reduce tensile strength
References
S. Singh, V. Kumar, S. Kumar, and A. Kumar, “Variant of MIG welding of similar and dissimilar metals: A review,” Mater. Today Proc., vol. 56, pp. 3550–3555, 2022, doi: https://doi.org/10.1016/j.matpr.2021.11.287.
L. Shi, C. S. Wu, and X. C. Liu, “Modeling the effects of ultrasonic vibration on friction stir welding,” J. Mater. Process. Technol., vol. 222, pp. 91–102, 2015, doi: https://doi.org/10.1016/j.jmatprotec.2015.03.002.
C. Hagenlocher, P. Stritt, R. Weber, and T. Graf, “Strain signatures associated to the formation of hot cracks during laser beam welding of aluminum alloys,” Opt. Lasers Eng., vol. 100, pp. 131–140, 2018, doi: https://doi.org/10.1016/j.optlaseng.2017.08.007.
M. Mazar Atabaki, M. Nikodinovski, P. Chenier, J. Ma, W. Liu, and R. Kovacevic, “Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration,” Opt. Laser Technol., vol. 59, pp. 68–92, 2014, doi: https://doi.org/10.1016/j.optlastec.2013.12.008.
J. Verma and R. V. Taiwade, “Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review,” J. Manuf. Process., vol. 25, pp. 134–152, Jan. 2017, doi: 10.1016/J.JMAPRO.2016.11.003.
A. Aoki, S. Tashiro, H. Kurokawa, and M. Tanaka, “Development of novel MIG welding process with duplex current feeding,” J. Manuf. Process., vol. 47, pp. 74–82, 2019, doi: https://doi.org/10.1016/j.jmapro.2019.09.009.
S. Jaypuria, T. R. Mahapatra, S. Sahoo, and O. Jaypuria, “Effect of arc length trim and adaptive pulsed-MIG process parameters on bead profile of stainless steel with synergic power source,” Mater. Today Proc., vol. 26, pp. 787–795, 2020, doi: https://doi.org/10.1016/j.matpr.2020.01.027.
X. Yang, H. Chen, Z. Zhu, C. Cai, and C. Zhang, “Effect of shielding gas flow on welding process of laser-arc hybrid welding and MIG welding,” J. Manuf. Process., vol. 38, pp. 530–542, 2019, doi: https://doi.org/10.1016/j.jmapro.2019.01.045.
J. Liu, H. Zhu, Z. Li, W. Cui, and Y. Shi, “Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding,” Opt. Laser Technol., vol. 119, p. 105619, 2019, doi: https://doi.org/10.1016/j.optlastec.2019.105619.
C. Cai, S. He, H. Chen, and W. Zhang, “The influences of Ar-He shielding gas mixture on welding characteristics of fiber laser-MIG hybrid welding of aluminum alloy,” Opt. Laser Technol., vol. 113, pp. 37–45, 2019, doi: https://doi.org/10.1016/j.optlastec.2018.12.011.
E. Georgantzia, M. Gkantou, and G. S. Kamaris, “Aluminium alloys as structural material: A review of research,” Eng. Struct., vol. 227, p. 111372, 2021, doi: https://doi.org/10.1016/j.engstruct.2020.111372.
J. HIRSCH, “Recent development in aluminium for automotive applications,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 7, pp. 1995–2002, 2014, doi: https://doi.org/10.1016/S1003-6326(14)63305-7.
P. Rambabu, N. Eswara Prasad, V. V Kutumbarao, and R. J. H. Wanhill, “Aluminium Alloys for Aerospace Applications BT - Aerospace Materials and Material Technologies : Volume 1: Aerospace Materials,” N. E. Prasad and R. J. H. Wanhill, Eds. Singapore: Springer Singapore, 2017, pp. 29–52. doi: 10.1007/978-981-10-2134-3_2.
N. E. Udoye, A. O. Inegbenebor, and O. S. I. Fayomi, “The Study on Improvement of Aluminium Alloy for Engineering Application: A Review,” Int. J. Mech. Eng. Technol., vol. 10, no. 3, pp. 380–385, 2019, [Online]. Available: http://www.iaeme.com/IJMET/index.asp380http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=10&IType=3http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=10&IType=3
D. Varshney and K. Kumar, “Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization,” Ain Shams Eng. J., vol. 12, no. 1, pp. 1143–1152, 2021, doi: https://doi.org/10.1016/j.asej.2020.05.013.
R. D. Ardika, T. Triyono, N. Muhayat, and Triyono, “A review porosity in aluminum welding,” Procedia Struct. Integr., vol. 33, pp. 171–180, 2021, doi: https://doi.org/10.1016/j.prostr.2021.10.021.
P. Li, F. Nie, H. Dong, S. Li, G. Yang, and H. Zhang, “Pulse MIG Welding of 6061-T6/A356-T6 Aluminum Alloy Dissimilar T-joint,” J. Mater. Eng. Perform., vol. 27, no. 9, pp. 4760–4769, 2018, doi: 10.1007/s11665-018-3528-y.
L. Huang et al., “Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy,” J. Manuf. Process., vol. 31, pp. 514–522, 2018, doi: https://doi.org/10.1016/j.jmapro.2017.12.010.
S. Yan, C. Ma, and H. Chen, “Modifying microstructures and mechanical properties of laser-arc welded joints of dissimilar advanced aluminum alloys,” Mater. Charact., vol. 164, p. 110331, 2020, doi: https://doi.org/10.1016/j.matchar.2020.110331.
B. Yang et al., “Influence of ultrasonic peening on microstructure and surface performance of laser-arc hybrid welded 5A06 aluminum alloy joint,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 9576–9587, 2020, doi: https://doi.org/10.1016/j.jmrt.2020.06.057.
A. P. Dewanto, W. Amirudin, and H. Yudo, “Analisa Kekuatan Mekanik Sambungan Las Metode Mig( Metal Inert Gas) Dan Metode Fsw( Friction Stir Welding) 800 Rpm Pada Alumunium Tipe 5083,” J. Tek. Perkapalan, vol. 4, no. 3, pp. 613–621, 2016.
I. N. I. Sihombing, U. Budiaro, and A. F. Zakki, “Pengaruh Posisi Pengelasan dan Bentuk Kampuh Terhadap Kekuatan Tarik dan Mikrografi Sambungan Las Metal Inert Gas (MIG) Pada Aluminium 6061 Sebagai Bahan Material Kapal,” J. Tek. Perkapalan, vol. 7, no. 4, p. 303, 2019, [Online]. Available: https://ejournal3.undip.ac.id/index.php/naval
I. Iswanto, N. Noerdianto, A. Fachruddin, and M. Mulyadi, “Analisa perbandingan kekuatan hasil pengelasan TIG dan pengelasan MIG pada Aluminium 5083,” Turbo J. Progr. Stud. Tek. Mesin, vol. 9, no. 1, pp. 87–92, 2020, doi: 10.24127/trb.v9i1.1166.
K. Witono, T. Machfuroh, S. Sarjiyana, and E. Faizal, “Pengaruh Variasi Travel Speed Terhadap Kekuatan Tarik Pada Pengelasan Disimilar Metal Dengan Mig Robotic Welding,” Otopro, vol. 19, no. 1, pp. 34–39, 2023, doi: 10.26740/otopro.v19n1.p34-39.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract views: 0
,
PDF Downloads: 0

3.png)









